当前位置:   article > 正文

吴恩达deeplearning.ai:Tensorflow训练一个神经网络

吴恩达deeplearning.ai:Tensorflow训练一个神经网络

以下内容有任何不理解可以翻看我之前的博客哦:吴恩达deeplearning.ai
在之前的博客中。我们陆续学习了各个方面的有关深度学习的内容,今天可以从头开始训练一个神经网络了。

Tensorflow训练神经网络模型

我们使用之前用过的例子:
在这里插入图片描述
这个神经网络有三层,第一层拥有25个神经元,第二层15个神经元,第三层为最终输出层。
现在提供一个训练集X,一个标签Y,该如何通过代码的形式来表现呢?

#1导入工具包
import tensrflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense

#2创建三个层并让Tensorflow按照顺序将几个层串联起来
  model = Sequential([
    Dense(units = 25, activation = 'sigmoid')
    Dense(units = 15, activation = 'sigmoid')
    Dense(units = 1, activation = 'sigmoid')
                     ])
 #3引入工具包,并且让损失函数使用分类交叉熵的形式
from tensorflow.keras.losses import
BinaryCrossentropy
  model.compile(loss = BinaryCrossentropy())

#调用拟合函数,epoch代表训练次数
  model.fit(X, Y, epochs=100)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

模型中的一些细节讲解

框架相关

让我们先复习一下之前的内容,如何实现逻辑回归的:
第一步,如何在给定输入特征X和参数W,b的情况下计算输出(定义模型),我们这里经常使用的是sigmoid函数。
第二步,指定损失函数与成本函数
第三步,训练模型,最小化J(w,b)
让我们在训练神经网络的背景下来看看这几步:

#1导入工具包
import tensrflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense

#2创建三个层并让Tensorflow按照顺序将几个层串联起来
  model = Sequential([
    Dense(units = 25, activation = 'sigmoid')
    Dense(units = 15, activation = 'sigmoid')
    Dense(units = 1, activation = 'sigmoid')
                     ])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

这几段代码说明了神经网络的整个架构体系,告诉你第一层有25个神经元,第二层有15个神经元,第三层一个,采用的激活函数均为sigmoid。

损失函数相关

再写一遍 损失函数的一般数学表达式:
J ( W , B ) = 1 m ∑ L ( f ( x ( i ) , y ( i ) ) J(W,B) = \frac{1}{m}\sum L(f(x^{(i)},y^{(i)}) J(W,B)=m1L(fx(i),y(i))

 #3引入工具包,并且让损失函数使用分类交叉熵的形式
from tensorflow.keras.losses import
BinaryCrossentropy
  model.compile(loss = BinaryCrossentropy())
  • 1
  • 2
  • 3
  • 4

这个名叫keras的工具包其实是和tensorflow是完全不同的两个项目开发的,只是最后合入了tensorflow,所有它的工具包需要你单独import。另外,由于工具包的种类真的很多,所以不知道工具包的名字和使用方法时可以上网查找哦。
我们在之前的博客中,曾经学习过二元交叉熵(这是统计学上的叫法),二元的意思是说明这是个布尔值,要么为1要么为0.只是在之前的博客中不叫这个名字,而是为了能够在一个式子之中写出价代价函数:
L ( f ( x ) , y ) = − y l o g ( f ( x ) ) − ( 1 − y ) l o g ( ( 1 − f ( x ) ) L(f(x),y) = -ylog(f(x)) - (1-y)log((1-f(x)) L(f(x),y)=ylog(f(x))(1y)log((1f(x))
在制定了损失函数之后,Tensorflow就知道了你是希望最小化m个训练的平均值。
如果你是想解决其它类型的问题例如回归问题,你可以给tensorflow指定其它种类的损失函数:

from tensorflow.keras.losses import MeanSquareError
model.compile(loss = MeanSquareError())
  • 1
  • 2

这是最小化平方误差损失的损失函数。

梯度下降

梯度下降时,你需要重复公式:
w = w − α ∂ ∂ w j J ( w , b ) b = b − α ∂ ∂ b j J ( w , b ) w = w - \alpha\frac{\partial}{\partial w_j}J(w,b)\\ b = b - \alpha\frac{\partial}{\partial b_j}J(w,b) w=wαwjJ(w,b)b=bαbjJ(w,b)

#调用拟合函数,epoch代表训练次数
  model.fit(X, Y, epochs=100)
  • 1
  • 2

Tensorflow使用的是一种叫做反向传播的算法来计算这些偏导数项,只是在函数model.fit中完成的,并告诉它这样迭代100次。

很明显我们现在的代码严重依赖于Tensorflow库,随着技术的发展,大部分工程师都会使用库而非自己重头编起。现在你已经了解了如何自己训练一个神经网络了,在接下来的博客中我们讲讲到一些你可以改变的地方,使得你的神经网络更加强大。
为了给读者你造成不必要的麻烦,博主的所有视频都没开仅粉丝可见,如果想要阅读我的其他博客,可以点个小小的关注哦。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/144771
推荐阅读
相关标签
  

闽ICP备14008679号