赞
踩
1、目前效果最好的一个: 但还是纸牌能检测出来https://blog.csdn.net/mysteryrat/article/details/8955229
2、https://blog.csdn.net/zszszs1994/article/details/53289237
下面将我修改运行成功的代码贴出,至于优化,提高识别四边形准确度,还需要继续研究。
//透视变换,检测四边形,有时候容易检测不出
//但目前效果最好的就是该程序
#include "stdafx.h"
#include "core/core.hpp"
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
#include <set>
cv::Point2f center(0, 0);
//求四个顶点的坐标
// 类函数,Point2f为一个类对象
cv::Point2f computeIntersect(cv::Vec4i a, cv::Vec4i b)
{
int x1 = a[0], y1 = a[1], x2 = a[2], y2 = a[3], x3 = b[0], y3 = b[1], x4 = b[2], y4 = b[3];
if (float d = ((float)(x1 - x2)*(y3 - y4) - (y1 - y2)*(x3 - x4)))
{
cv::Point2f pt;
pt.x = ((x1*y2 - y1 * x2)*(x3 - x4) - (x1 - x2)*(x3*y4 - y3 * x4)) / d;
pt.y = ((x1*y2 - y1 * x2)*(y3 - y4) - (y1 - y2)*(x3*y4 - y3 * x4)) / d;
return pt;
}
else
return cv::Point2f(-1, -1);
}
//确定四个点的中心线
void sortCorners(std::vector<cv::Point2f>& corners, cv::Point2f center)
{
std::vector<cv::Point2f> top, bot;
for (unsigned int i = 0; i< corners.size(); i++)
{
if (corners[i].y<center.y)
{
top.push_back(corners[i]);
}
else
{
bot.push_back(corners[i]);
}
}
cv::Point2f tl = top[0].x > top[1].x ? top[1] : top[0];
cv::Point2f tr = top[0].x > top[1].x ? top[0] : top[1];
cv::Point2f bl = bot[0].x > bot[1].x ? bot[1] : bot[0];
cv::Point2f br = bot[0].x > bot[1].x ? bot[0] : bot[1];
corners.clear();
//注意以下存放顺序是顺时针,当时这里出错了,如果想任意顺序下文开辟的四边形矩阵注意对应
corners.push_back(tl);
corners.push_back(tr);
corners.push_back(br);
corners.push_back(bl);
}
// 算法流程:先彩色转灰度,然后模糊求canny边缘,再用hough检测直线,
// 求出四线交点,利用opencv自带的求透视矩阵的函数求出透视矩阵,
// 然后利用透视矩阵转换源图像所需的四边形,效果图后续见图片:
int main()
{
cv::Mat src = cv::imread("4.jpg");
if (src.empty())
{
return -1;
}
cv::Mat bw;
//彩色转灰度
cv::cvtColor(src, bw, CV_BGR2GRAY);
cv::namedWindow("gray_src",0);
imshow("gray_src", bw);
//模糊
cv::blur(bw, bw, cv::Size(3, 3));
cv::namedWindow("blur", 0);
imshow("blur", bw);
//边缘检测
cv::Canny(bw, bw, 100, 100, 3);
cv::namedWindow("cannyblur", 0);
imshow("cannyblur", bw);
//hough检测直线
std::vector<cv::Vec4i> lines;
cv::HoughLinesP(bw, lines, 1, CV_PI / 180, 70, 30, 10);
//1像素分辨能力 1度的角度分辨能力 >70可以检测成连线 30是最小线长
//在直线L上的点(且点与点之间距离小于maxLineGap=10的)连成线段,然后这些点全部删除,并且记录该线段的参数,就是起始点和终止点
//needed for visualization only//这里是将检测的线调整到延长至全屏,即射线的效果,其实可以不必这么做
for (unsigned int i = 0; i<lines.size(); i++)
{
cv::Vec4i v = lines[i];
lines[i][0] = 0;
lines[i][1] = ((float)v[1] - v[3]) / (v[0] - v[2])* -v[0] + v[1];
lines[i][2] = src.cols;
lines[i][3] = ((float)v[1] - v[3]) / (v[0] - v[2])*(src.cols - v[2]) + v[3];
}
std::vector<cv::Point2f> corners;//线的交点存储
for (unsigned int i = 0; i<lines.size(); i++)
{
for (unsigned int j = i + 1; j<lines.size(); j++)
{
cv::Point2f pt = computeIntersect(lines[i], lines[j]);
if (pt.x >= 0 && pt.y >= 0)
{
corners.push_back(pt);
}
}
}
std::vector<cv::Point2f> approx;
cv::approxPolyDP(cv::Mat(corners), approx, cv::arcLength(cv::Mat(corners), true)*0.02, true);
//检测是否是四边形,很多图片检测不到
if (approx.size() != 4)
{
std::cout << "The object is not quadrilateral(四边形)!" << std::endl;
return -1;
}
//get mass center
for (unsigned int i = 0; i < corners.size(); i++)
{
center += corners[i];
}
center *= (1. / corners.size());
sortCorners(corners, center);
cv::Mat dst = src.clone();
//Draw Lines
for (unsigned int i = 0; i<lines.size(); i++)
{
cv::Vec4i v = lines[i];
cv::line(dst, cv::Point(v[0], v[1]), cv::Point(v[2], v[3]), CV_RGB(0, 255, 0)); //目标版块画绿线
}
//draw corner points
cv::circle(dst, corners[0], 3, CV_RGB(255, 0, 0), 2);
cv::circle(dst, corners[1], 3, CV_RGB(0, 255, 0), 2);
cv::circle(dst, corners[2], 3, CV_RGB(0, 0, 255), 2);
cv::circle(dst, corners[3], 3, CV_RGB(255, 255, 255), 2);
//draw mass center
cv::circle(dst, center, 3, CV_RGB(255, 255, 0), 2);
cv::Mat quad = cv::Mat::zeros(300, 220, CV_8UC3);//设定校正过的图片从320*240变为300*220
//corners of the destination image
std::vector<cv::Point2f> quad_pts;
quad_pts.push_back(cv::Point2f(0, 0));
quad_pts.push_back(cv::Point2f(quad.cols, 0));//(220,0)
quad_pts.push_back(cv::Point2f(quad.cols, quad.rows));//(220,300)
quad_pts.push_back(cv::Point2f(0, quad.rows));
// Get transformation matrix
cv::Mat transmtx = cv::getPerspectiveTransform(corners, quad_pts); //求源坐标系(已畸变的)与目标坐标系的转换矩阵
// Apply perspective transformation透视转换
cv::warpPerspective(src, quad, transmtx, quad.size());
cv::namedWindow("src", 0);
cv::imshow("src", src);
cv::namedWindow("image", 0);
cv::imshow("image", dst);
cv::namedWindow("quadrilateral", 0);
cv::imshow("quadrilateral", quad);
cv::waitKey();
return 0;
}
运行结果图片
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。