赞
踩
作为 Python 开发人员,使用第三方库来完成您真正想要的工作是很方便的,而不是每次都重新发明轮子。在本教程中,您将熟悉psutil,它是Python 中用于进程和系统监控的跨平台库,以及用于在 Python 中提取系统和硬件信息的内置平台模块。
最后,我将向您展示如何打印 GPU 信息(当然,如果您有的话)。
这是本教程的目录:
相关: 如何使用 ipaddress 模块在 Python 中操作 IP 地址。
在我们深入研究之前,您需要安装 psutil:
pip3 install psutil
打开一个新的 python 文件,让我们开始,导入必要的模块:
- import psutil
- import platform
- from datetime import datetime
让我们创建一个函数,将大量字节转换为缩放格式(例如,以千、兆、千兆等为单位):
- def get_size(bytes, suffix="B"):
- """
- Scale bytes to its proper format
- e.g:
- 1253656 => '1.20MB'
- 1253656678 => '1.17GB'
- """
- factor = 1024
- for unit in ["", "K", "M", "G", "T", "P"]:
- if bytes < factor:
- return f"{bytes:.2f}{unit}{suffix}"
- bytes /= factor
我们在这里需要平台模块:
- print("="*40, "System Information", "="*40)
- uname = platform.uname()
- print(f"System: {uname.system}")
- print(f"Node Name: {uname.node}")
- print(f"Release: {uname.release}")
- print(f"Version: {uname.version}")
- print(f"Machine: {uname.machine}")
- print(f"Processor: {uname.processor}")
获取计算机启动的日期和时间:
- # Boot Time
- print("="*40, "Boot Time", "="*40)
- boot_time_timestamp = psutil.boot_time()
- bt = datetime.fromtimestamp(boot_time_timestamp)
- print(f"Boot Time: {bt.year}/{bt.month}/{bt.day} {bt.hour}:{bt.minute}:{bt.second}")
让我们获取一些 CPU 信息,例如总内核数、使用情况等:
- # let's print CPU information
- print("="*40, "CPU Info", "="*40)
- # number of cores
- print("Physical cores:", psutil.cpu_count(logical=False))
- print("Total cores:", psutil.cpu_count(logical=True))
- # CPU frequencies
- cpufreq = psutil.cpu_freq()
- print(f"Max Frequency: {cpufreq.max:.2f}Mhz")
- print(f"Min Frequency: {cpufreq.min:.2f}Mhz")
- print(f"Current Frequency: {cpufreq.current:.2f}Mhz")
- # CPU usage
- print("CPU Usage Per Core:")
- for i, percentage in enumerate(psutil.cpu_percent(percpu=True, interval=1)):
- print(f"Core {i}: {percentage}%")
- print(f"Total CPU Usage: {psutil.cpu_percent()}%")
psutil的cpu_count()函数返回内核数,而cpu_freq()函数返回 CPU 频率,namedtuple
包括以 Mhz 表示的当前、最小和最大频率,您可以设置percpu=True
为获取每个 CPU 频率。
cpu_percent()方法返回一个浮点数,表示当前 CPU 利用率的百分比,设置interval
为 1(秒)将比较一秒前后经过的系统 CPU 时间,我们设置percpu
为True
以获取每个内核的 CPU 使用率。
- # Memory Information
- print("="*40, "Memory Information", "="*40)
- # get the memory details
- svmem = psutil.virtual_memory()
- print(f"Total: {get_size(svmem.total)}")
- print(f"Available: {get_size(svmem.available)}")
- print(f"Used: {get_size(svmem.used)}")
- print(f"Percentage: {svmem.percent}%")
- print("="*20, "SWAP", "="*20)
- # get the swap memory details (if exists)
- swap = psutil.swap_memory()
- print(f"Total: {get_size(swap.total)}")
- print(f"Free: {get_size(swap.free)}")
- print(f"Used: {get_size(swap.used)}")
- print(f"Percentage: {swap.percent}%")
virtual_memory()方法返回有关系统内存使用情况的统计信息namedtuple
,包括(可用total
物理内存总量)、available
(可用内存,即未使用)used
和percent
(即百分比)等字段。swap_memory()是相同的,但用于交换内存。
我们使用先前定义的get_size()函数以缩放方式打印值,因为这些统计信息以字节表示。
- # Disk Information
- print("="*40, "Disk Information", "="*40)
- print("Partitions and Usage:")
- # get all disk partitions
- partitions = psutil.disk_partitions()
- for partition in partitions:
- print(f"=== Device: {partition.device} ===")
- print(f" Mountpoint: {partition.mountpoint}")
- print(f" File system type: {partition.fstype}")
- try:
- partition_usage = psutil.disk_usage(partition.mountpoint)
- except PermissionError:
- # this can be catched due to the disk that
- # isn't ready
- continue
- print(f" Total Size: {get_size(partition_usage.total)}")
- print(f" Used: {get_size(partition_usage.used)}")
- print(f" Free: {get_size(partition_usage.free)}")
- print(f" Percentage: {partition_usage.percent}%")
- # get IO statistics since boot
- disk_io = psutil.disk_io_counters()
- print(f"Total read: {get_size(disk_io.read_bytes)}")
- print(f"Total write: {get_size(disk_io.write_bytes)}")
正如预期的那样,disk_usage()函数将磁盘使用统计信息返回为namedtuple
,包括total
,used
以及free
以字节表示的空间。
- # Network information
- print("="*40, "Network Information", "="*40)
- # get all network interfaces (virtual and physical)
- if_addrs = psutil.net_if_addrs()
- for interface_name, interface_addresses in if_addrs.items():
- for address in interface_addresses:
- print(f"=== Interface: {interface_name} ===")
- if str(address.family) == 'AddressFamily.AF_INET':
- print(f" IP Address: {address.address}")
- print(f" Netmask: {address.netmask}")
- print(f" Broadcast IP: {address.broadcast}")
- elif str(address.family) == 'AddressFamily.AF_PACKET':
- print(f" MAC Address: {address.address}")
- print(f" Netmask: {address.netmask}")
- print(f" Broadcast MAC: {address.broadcast}")
- # get IO statistics since boot
- net_io = psutil.net_io_counters()
- print(f"Total Bytes Sent: {get_size(net_io.bytes_sent)}")
- print(f"Total Bytes Received: {get_size(net_io.bytes_recv)}")
net_if_addrs()函数返回与系统上安装的每个网络接口卡相关联的地址。
好的,这是我个人 linux 机器的结果输出:
- <span style="color:#212529"><span style="background-color:#ffffff"><span style="background-color:#f5f2f0"><span style="color:#000000"><code class="language-markup">======================================== System Information ========================================
- System: Linux
- Node Name: rockikz
- Release: 4.17.0-kali1-amd64
- Version: #1 SMP Debian 4.17.8-1kali1 (2018-07-24)
- Machine: x86_64
- Processor:
- ======================================== Boot Time ========================================
- Boot Time: 2019/8/21 9:37:26
- ======================================== CPU Info ========================================
- Physical cores: 4
- Total cores: 4
- Max Frequency: 3500.00Mhz
- Min Frequency: 1600.00Mhz
- Current Frequency: 1661.76Mhz
- CPU Usage Per Core:
- Core 0: 0.0%
- Core 1: 0.0%
- Core 2: 11.1%
- Core 3: 0.0%
- Total CPU Usage: 3.0%
- ======================================== Memory Information ========================================
- Total: 3.82GB
- Available: 2.98GB
- Used: 564.29MB
- Percentage: 21.9%
- ==================== SWAP ====================
- Total: 0.00B
- Free: 0.00B
- Used: 0.00B
- Percentage: 0%
- ======================================== Disk Information ========================================
- Partitions and Usage:
- === Device: /dev/sda1 ===
- Mountpoint: /
- File system type: ext4
- Total Size: 451.57GB
- Used: 384.29GB
- Free: 44.28GB
- Percentage: 89.7%
- Total read: 2.38GB
- Total write: 2.45GB
- ======================================== Network Information ========================================
- === Interface: lo ===
- IP Address: 127.0.0.1
- Netmask: 255.0.0.0
- Broadcast IP: None
- === Interface: lo ===
- === Interface: lo ===
- MAC Address: 00:00:00:00:00:00
- Netmask: None
- Broadcast MAC: None
- === Interface: wlan0 ===
- IP Address: 192.168.1.101
- Netmask: 255.255.255.0
- Broadcast IP: 192.168.1.255
- === Interface: wlan0 ===
- === Interface: wlan0 ===
- MAC Address: 64:70:02:07:40:50
- Netmask: None
- Broadcast MAC: ff:ff:ff:ff:ff:ff
- === Interface: eth0 ===
- MAC Address: d0:27:88:c6:06:47
- Netmask: None
- Broadcast MAC: ff:ff:ff:ff:ff:ff
- Total Bytes Sent: 123.68MB
- Total Bytes Received: 577.94MB</code></span></span></span></span>
如果您使用的是笔记本电脑,则可以使用 psutil.sensors_battery() 获取电池信息。
另外,如果你是一个Linux用户,你可以使用 psutil.sensors_fan() 来获得风扇的RPM(每分钟转数) ,也 psutil.sensors_temperatures() 来获得各种设备的温度。
psutil不向我们提供 GPU 信息。因此,我们需要安装GPUtil:
pip3 install gputil
GPUtil是一个 Python 模块,仅用于获取 NVIDIA GPU 的 GPU 状态,它定位计算机上的所有 GPU,确定它们的可用性并返回可用 GPU 的有序列表。它需要安装最新的 NVIDIA 驱动程序。
此外,我们需要安装tabulate 模块,这将允许我们以表格方式打印 GPU 信息:
pip3 install tabulate
以下代码行打印您机器中的所有 GPU 及其详细信息:
- # GPU information
- import GPUtil
- from tabulate import tabulate
- print("="*40, "GPU Details", "="*40)
- gpus = GPUtil.getGPUs()
- list_gpus = []
- for gpu in gpus:
- # get the GPU id
- gpu_id = gpu.id
- # name of GPU
- gpu_name = gpu.name
- # get % percentage of GPU usage of that GPU
- gpu_load = f"{gpu.load*100}%"
- # get free memory in MB format
- gpu_free_memory = f"{gpu.memoryFree}MB"
- # get used memory
- gpu_used_memory = f"{gpu.memoryUsed}MB"
- # get total memory
- gpu_total_memory = f"{gpu.memoryTotal}MB"
- # get GPU temperature in Celsius
- gpu_temperature = f"{gpu.temperature} °C"
- gpu_uuid = gpu.uuid
- list_gpus.append((
- gpu_id, gpu_name, gpu_load, gpu_free_memory, gpu_used_memory,
- gpu_total_memory, gpu_temperature, gpu_uuid
- ))
-
- print(tabulate(list_gpus, headers=("id", "name", "load", "free memory", "used memory", "total memory",
- "temperature", "uuid")))
这是我机器中的输出:
- ======================================== GPU Details ========================================
- id name load free memory used memory total memory temperature uuid
- ---- ---------------- ------ ------------- ------------- -------------- ------------- ----------------------------------------
- 0 GeForce GTX 1050 2.0% 3976.0MB 120.0MB 4096.0MB 52.0 °C GPU-c9b08d82-f1e2-40b6-fd20-543a4186d6ce
太好了,现在您可以将这些信息集成到您的 Python 监视器应用程序和实用程序中!
检查我们在本教程中使用的库的文档:
您还可以使用 psutil 来 监控操作系统进程,例如每个进程的 CPU 和内存使用情况等。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。