赞
踩
import torch
import torch.nn as nn
class MultimodalNet(nn.Module):
def __init__(self):
super(MultimodalNet, self).__init__()
# 定义第一个模态的神经网络层
self.fc1 = nn.Linear(100, 50)
self.relu1 = nn.ReLU()
# 定义第二个模态的神经网络层
self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
self.pool1 = nn.MaxPool2d(kernel_size=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.relu2 = nn.ReLU()
# 定义第三个模态的神经网络层
self.lstm = nn.LSTM(10, 20, batch_first=True)
# 定义最终的全连接层
self.fc2 = nn.Linear(1344, 10)
def forward(self, x1, x2, x3):
# 第一个模态的前向传播
x1 = self.fc1(x1)
x1 = self.relu1(x1)
# 第二个模态的前向传播
x2 = self.conv1(x2)
x2 = self.pool1(x2)
x2 = self.conv2(x2)
x2 = self.pool2(x2)
x2 = self.relu2(x2)
# 第三个模态的前向传播
x3, _ = self.lstm(x3)
# 将三个模态的输出拼接在一起
x = torch.cat([x1, x2.view(x2.size(0), -1), x3.view(x3.size(0), -1)], dim=1)
# 最终的前向传播
x = self.fc2(x)
return x
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。