当前位置:   article > 正文

张量分解和应用(1)_tamara g. kolda

tamara g. kolda

注: 此文章为对Tamara G.Kolda和Brett W.Bader的<Tensor Decompositions and Applications>摘抄和分析。
在这里插入图片描述

在这里插入图片描述

介绍

注:定义不敢乱翻译。
在这里插入图片描述

The order of a tensor is the number of dimensions, also known as ways or modes.

A colon is used to indicate all elements of a mode.
在这里插入图片描述

Fibers are the higher-order analogue of matrix rows and columns.
A fiber is defined by fixing every index but one.

Slices are two-dimensional sections of a tensor, defined by fixing all but two indices.
在这里插入图片描述

The norm of a tensor X ∈ R I 1 × I 2 × ⋯ × I N \mathcal{X} \in \mathbb{R}^{I_1\times I_2 \times \cdots \times I_N} XRI1×I2××IN is the square root of the sum of the squares of all its elements.
∣ ∣ X ∣ ∣ = ∑ i 1 = 1 I 1 ∑ i 2 = 1 I 2 ⋯ ∑ i N = 1 I N x i 1 i 2 ⋯ i N 2 ||\mathcal{X}||=\sqrt{\sum\limits_{i_1=1} ^{I_1}\sum\limits_{i_2=1} ^{I_2}\cdots\sum\limits_{i_N=1} ^{I_N}x_{i_1i_2\cdots i_N}^2} X=i1=1I1i2=1I2iN=1INxi1i2iN2

The inner product of two same-sized tensors X , Y ∈ R I 1 × I 2 × ⋯ × I N \mathcal{X,Y}\in \mathbb{R}^{I_1\times I_2 \times \cdots \times I_N} X,YRI1×I2××IN is the sum of the products of their entries, i.e.,
< X , Y > = ∑ i 1 = 1 I 1 ∑ i 2 = 1 I 2 ⋯ ∑ i N = 1 I N x i 1 i 2 ⋯ i N y i 1 i 2 ⋯ i N . <\mathcal{X},\mathcal{Y}>=\sum\limits_{i_1=1} ^{I_1}\sum\limits_{i_2=1} ^{I_2}\cdots\sum\limits_{i_N=1} ^{I_N}x_{i_1i_2\cdots i_N}y_{i_1i_2\cdots i_N}. <X,Y>=i1=1I1i2=1I2iN=1INxi1i2iNyi1i2iN.

秩一张量

在这里插入图片描述

An N-way tensor X ∈ R I 1 × I 2 × ⋯ × I N \mathcal{X} \in \mathbb{R}^{I_1\times I_2 \times \cdots \times I_N} XRI1×I2××IN is rank one if it can be written as the outer product of N vectors, i.e.,
X = a ( 1 ) ∘ a ( 2 ) ∘ ⋯ ∘ a ( 3 ) . \mathcal{X}=a^{(1)} \circ a^{(2)} \circ\cdots \circ a^{(3)}. X=a(1)a(2)a(3).
The symbol “ ∘ \circ ” represents the vector outer product.

张量对称性

对角张量在这里插入图片描述

矩阵化(将一个张量转化为矩阵)

Matricization, also known as unfolding or flattening, is the process of recording the elements of an N-way array into a matrix.

在这里插入图片描述

张量乘法(n模态积)

在这里插入图片描述
在这里插入图片描述

矩阵的Kronecker、Khatri-Rao、和Hadamard积

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/176613?site
推荐阅读
相关标签
  

闽ICP备14008679号