赞
踩
注: 此文章为对Tamara G.Kolda和Brett W.Bader的<Tensor Decompositions and Applications>摘抄和分析。
注:定义不敢乱翻译。
The order of a tensor is the number of dimensions, also known as ways or modes.
A colon is used to indicate all elements of a mode.
Fibers are the higher-order analogue of matrix rows and columns.
A fiber is defined by fixing every index but one.
Slices are two-dimensional sections of a tensor, defined by fixing all but two indices.
The norm of a tensor X ∈ R I 1 × I 2 × ⋯ × I N \mathcal{X} \in \mathbb{R}^{I_1\times I_2 \times \cdots \times I_N} X∈RI1×I2×⋯×IN is the square root of the sum of the squares of all its elements.
∣ ∣ X ∣ ∣ = ∑ i 1 = 1 I 1 ∑ i 2 = 1 I 2 ⋯ ∑ i N = 1 I N x i 1 i 2 ⋯ i N 2 ||\mathcal{X}||=\sqrt{\sum\limits_{i_1=1} ^{I_1}\sum\limits_{i_2=1} ^{I_2}\cdots\sum\limits_{i_N=1} ^{I_N}x_{i_1i_2\cdots i_N}^2} ∣∣X∣∣=i1=1∑I1i2=1∑I2⋯iN=1∑INxi1i2⋯iN2
The inner product of two same-sized tensors X , Y ∈ R I 1 × I 2 × ⋯ × I N \mathcal{X,Y}\in \mathbb{R}^{I_1\times I_2 \times \cdots \times I_N} X,Y∈RI1×I2×⋯×IN is the sum of the products of their entries, i.e.,
< X , Y > = ∑ i 1 = 1 I 1 ∑ i 2 = 1 I 2 ⋯ ∑ i N = 1 I N x i 1 i 2 ⋯ i N y i 1 i 2 ⋯ i N . <\mathcal{X},\mathcal{Y}>=\sum\limits_{i_1=1} ^{I_1}\sum\limits_{i_2=1} ^{I_2}\cdots\sum\limits_{i_N=1} ^{I_N}x_{i_1i_2\cdots i_N}y_{i_1i_2\cdots i_N}. <X,Y>=i1=1∑I1i2=1∑I2⋯iN=1∑INxi1i2⋯iNyi1i2⋯iN.
An N-way tensor X ∈ R I 1 × I 2 × ⋯ × I N \mathcal{X} \in \mathbb{R}^{I_1\times I_2 \times \cdots \times I_N} X∈RI1×I2×⋯×IN is rank one if it can be written as the outer product of N vectors, i.e.,
X = a ( 1 ) ∘ a ( 2 ) ∘ ⋯ ∘ a ( 3 ) . \mathcal{X}=a^{(1)} \circ a^{(2)} \circ\cdots \circ a^{(3)}. X=a(1)∘a(2)∘⋯∘a(3).
The symbol “ ∘ \circ ∘” represents the vector outer product.
Matricization, also known as unfolding or flattening, is the process of recording the elements of an N-way array into a matrix.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。