当前位置:   article > 正文

Linux驱动开发--内核定时器和内存管理_内存分配 gpf_atomic

内存分配 gpf_atomic

目录

一、时钟中断

二、延时机制

三、定时器

代码示例:

三、内核内存管理框架

四、内核中常用动态分配

4.1 kmalloc

4.2 vmalloc

4.3 kmalloc & vmalloc 的比较

4.4 分配选择原则:

4.5 代码示例:

五、IO访问-------访问外设控制器的寄存器

六、led驱动示例

代码示例:


一、时钟中断

硬件有一个时钟装置,该装置每隔一定时间发出一个时钟中断(称为一次时钟嘀嗒-tick),对应的中断处理程序就将全局变量jiffies_64加1

jiffies_64 是一个全局64位整型, jiffies全局变量为其低32位的全局变量,程序中一般用jiffies

HZ:可配置的宏,表示1秒钟产生的时钟中断次数,一般设为100或200

二、延时机制

  1. 短延迟:忙等待

    1. 1. void ndelay(unsigned long nsecs)
    2. 2. void udelay(unsigned long usecs)
    3. 3. void mdelay(unsigned long msecs)
  2. 长延迟:忙等待

    使用jiffies比较宏来实现

    1. time_after(a,b) //a > b
    2. time_before(a,b) //a < b
    3. //延迟100个jiffies
    4. unsigned long delay = jiffies + 100;
    5. while(time_before(jiffies,delay))
    6. {
    7. ;
    8. }
    9. //延迟2s
    10. unsigned long delay = jiffies + 2*HZ;
    11. while(time_before(jiffies,delay))
    12. {
    13. ;
    14. }
  3. 睡眠延迟----阻塞类

    1. void msleep(unsigned int msecs);
    2. unsigned long msleep_interruptible(unsigned int msecs);

延时机制的选择原则:

  1. 异常上下文中只能采用忙等待类
  2. 任务上下文短延迟采用忙等待类,长延迟采用阻塞类

三、定时器

(1)定义定时器结构体

  1. struct timer_list
  2. {
  3. struct list_head entry;
  4. unsigned long expires; // 期望的时间值 jiffies + x * HZ
  5. void (*function)(unsigned long); // 时间到达后,执行的回调函数,软中断异常上下文
  6. unsigned long data;
  7. };

(2)初始化定时器

init_timer(struct timer_list *)

(3)增加定时器 ------ 定时器开始计时

void add_timer(struct timer_list *timer);

(4)删除定时器 -------定时器停止工作

int del_timer(struct timer_list * timer);

(5)修改定时器

 int mod_timer(struct timer_list *timer, unsigned long expires);
  1. 定义struct timer_list tl类型的变量
  2. init_timer(...);//模块入口函数
  3. //模块入口函数或open或希望定时器开始工作的地方
  4. tl.expires = jiffies + n * HZ //n秒
  5. tl.function = xxx_func;
  6. tl.data = ...;
  7. add_timer(....);
  8. //不想让定时器继续工作时
  9. del_timer(....);
  10. void xxx_func(unsigned long arg)
  11. {
  12. ......
  13. mod_timer(....);//如需要定时器继续隔指定时间再次调用本函数
  14. }

代码示例:

  1. #include <linux/module.h>
  2. #include <linux/kernel.h>
  3. #include <linux/fs.h>
  4. #include <linux/cdev.h>
  5. #include <linux/wait.h>
  6. #include <linux/device.h>
  7. #include <linux/sched.h>
  8. #include <linux/poll.h>
  9. #include <asm/uaccess.h>
  10. #include <asm/atomic.h>
  11. int major = 11;
  12. int minor = 0;
  13. int mysecond_num = 1;
  14. struct mysecond_dev
  15. {
  16. struct cdev mydev;
  17. int second;
  18. struct timer_list timer;
  19. atomic_t openflag;//1 can open, 0 can not open
  20. struct class *pcls;
  21. struct device *pdev;
  22. };
  23. struct mysecond_dev gmydev;
  24. void timer_func(unsigned long arg)
  25. {
  26. struct mysecond_dev *pmydev = (struct mysecond_dev *)arg;
  27. pmydev->second++;
  28. mod_timer(&pmydev->timer,jiffies + HZ * 1);
  29. }
  30. int mysecond_open(struct inode *pnode,struct file *pfile)
  31. {
  32. struct mysecond_dev *pmydev = NULL;
  33. pfile->private_data =(void *) (container_of(pnode->i_cdev,struct mysecond_dev,mydev));
  34. pmydev = (struct mysecond_dev *)pfile->private_data;
  35. if(atomic_dec_and_test(&pmydev->openflag))
  36. {
  37. pmydev->timer.expires = jiffies + HZ * 1;
  38. pmydev->timer.function = timer_func;
  39. pmydev->timer.data = (unsigned long)pmydev;
  40. add_timer(&pmydev->timer);
  41. return 0;
  42. }
  43. else
  44. {
  45. atomic_inc(&pmydev->openflag);
  46. printk("The device is opened already\n");
  47. return -1;
  48. }
  49. }
  50. int mysecond_close(struct inode *pnode,struct file *pfile)
  51. {
  52. struct mysecond_dev *pmydev = (struct mysecond_dev *)pfile->private_data;
  53. del_timer(&pmydev->timer);
  54. atomic_set(&pmydev->openflag,1);
  55. return 0;
  56. }
  57. ssize_t mysecond_read(struct file *pfile,char __user *puser,size_t size,loff_t *p_pos)
  58. {
  59. struct mysecond_dev *pmydev = (struct mysecond_dev *)pfile->private_data;
  60. int ret = 0;
  61. if(size < sizeof(int))
  62. {
  63. printk("the expect read size is invalid\n");
  64. return -1;
  65. }
  66. if(size >= sizeof(int))
  67. {
  68. size = sizeof(int);
  69. }
  70. ret = copy_to_user(puser,&pmydev->second,size);
  71. if(ret)
  72. {
  73. printk("copy to user failed\n");
  74. return -1;
  75. }
  76. return size;
  77. }
  78. struct file_operations myops = {
  79. .owner = THIS_MODULE,
  80. .open = mysecond_open,
  81. .release = mysecond_close,
  82. .read = mysecond_read,
  83. };
  84. int __init mysecond_init(void)
  85. {
  86. int ret = 0;
  87. dev_t devno = MKDEV(major,minor);
  88. /*申请设备号*/
  89. ret = register_chrdev_region(devno,mysecond_num,"mysecond");
  90. if(ret)
  91. {
  92. ret = alloc_chrdev_region(&devno,minor,mysecond_num,"mysecond");
  93. if(ret)
  94. {
  95. printk("get devno failed\n");
  96. return -1;
  97. }
  98. major = MAJOR(devno);//容易遗漏,注意
  99. }
  100. /*给struct cdev对象指定操作函数集*/
  101. cdev_init(&gmydev.mydev,&myops);
  102. /*将struct cdev对象添加到内核对应的数据结构里*/
  103. gmydev.mydev.owner = THIS_MODULE;
  104. cdev_add(&gmydev.mydev,devno,mysecond_num);
  105. init_timer(&gmydev.timer);
  106. atomic_set(&gmydev.openflag,1);
  107. gmydev.pcls = class_create(THIS_MODULE,"mysecond");
  108. if(IS_ERR(gmydev.pcls))
  109. {
  110. printk("class_create failed\n");
  111. cdev_del(&gmydev.mydev);
  112. unregister_chrdev_region(devno,mysecond_num);
  113. return -1;
  114. }
  115. gmydev.pdev = device_create(gmydev.pcls,NULL,devno,NULL,"mysec");
  116. if(NULL == gmydev.pdev)
  117. {
  118. printk("device_create failed\n");
  119. class_destroy(gmydev.pcls);
  120. cdev_del(&gmydev.mydev);
  121. unregister_chrdev_region(devno,mysecond_num);
  122. return -1;
  123. }
  124. return 0;
  125. }
  126. void __exit mysecond_exit(void)
  127. {
  128. dev_t devno = MKDEV(major,minor);
  129. device_destroy(gmydev.pcls,devno);
  130. class_destroy(gmydev.pcls);
  131. cdev_del(&gmydev.mydev);
  132. unregister_chrdev_region(devno,mysecond_num);
  133. }
  134. MODULE_LICENSE("GPL");
  135. module_init(mysecond_init);
  136. module_exit(mysecond_exit);

应用层:

  1. #include <sys/types.h>
  2. #include <sys/stat.h>
  3. #include <fcntl.h>
  4. #include <unistd.h>
  5. #include <stdio.h>
  6. int main(int argc,char *argv[])
  7. {
  8. int fd = -1;
  9. int sec = 0;
  10. if(argc < 2)
  11. {
  12. printf("The argument is too few\n");
  13. return 1;
  14. }
  15. fd = open(argv[1],O_RDONLY);
  16. if(fd < 0)
  17. {
  18. printf("open %s failed\n",argv[1]);
  19. return 2;
  20. }
  21. sleep(3);
  22. read(fd,&sec,sizeof(sec));
  23. printf("The second is %d\n",sec);
  24. close(fd);
  25. fd = -1;
  26. return 0;
  27. }

三、内核内存管理框架

内核将物理内存等分成N块4KB,称之为一页,每页都用一个struct page来表示,采用伙伴关系算法维护

内核地址空间划分图:

3G~3G+896M:低端内存,直接映射 虚拟地址 = 3G + 物理地址

​ 细分为:ZONE_DMA、ZONE_NORMAL

​ 分配方式:

  1. 1. kmalloc:小内存分配,slab算法
  2. 2. get_free_page:整页分配,2的n次方页,n最大为10

大于3G+896M:高端内存

​ 细分为:vmalloc区、持久映射区、固定映射区

​ 分配方式:vmalloc:虚拟地址连续,物理地址不连续

四、内核中常用动态分配

4.1 kmalloc

​ 函数原型:

void *kmalloc(size_t size, gfp_t flags);

kmalloc() 申请的内存位于直接映射区域,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因为存在较简单的转换关系,所以对申请的内存大小有限制,不能超过128KB。    较常用的 flags(分配内存的方法):

  • GFP_ATOMIC —— 分配内存的过程是一个原子过程,分配内存的过程不会被(高优先级进程或中断)打断;
  • GFP_KERNEL —— 正常分配内存;
  • GFP_DMA —— 给 DMA 控制器分配内存,需要使用该标志(DMA要求分配虚拟地址和物理地址连续)。

flags 的参考用法:

 |– 进程上下文,可以睡眠     GFP_KERNEL

 |– 异常上下文,不可以睡眠    GFP_ATOMIC

 |  |– 中断处理程序       GFP_ATOMIC

 |  |– 软中断          GFP_ATOMIC

 |  |– Tasklet         GFP_ATOMIC

 |– 用于DMA的内存,可以睡眠   GFP_DMA | GFP_KERNEL

 |– 用于DMA的内存,不可以睡眠  GFP_DMA |GFP_ATOMIC

 对应的内存释放函数为:

void kfree(const void *objp);
void *kzalloc(size_t size, gfp_t flags)

4.2 vmalloc

void *vmalloc(unsigned long size);

vmalloc() 函数则会在虚拟内存空间给出一块连续的内存区,但这片连续的虚拟内存在物理内存中并不一定连续。由于 vmalloc() 没有保证申请到的是连续的物理内存,因此对申请的内存大小没有限制,如果需要申请较大的内存空间就需要用此函数了。

对应的内存释放函数为:

void vfree(const void *addr);

注意:vmalloc() 和 vfree() 可以睡眠,因此不能从异常上下文调用。

4.3 kmalloc & vmalloc 的比较

kmalloc()、kzalloc()、vmalloc() 的共同特点是:

  1. 用于申请内核空间的内存;
  2. 内存以字节为单位进行分配;
  3. 所分配的内存虚拟地址上连续;

kmalloc()、kzalloc()、vmalloc() 的区别是:

  1. kzalloc 是强制清零的 kmalloc 操作;(以下描述不区分 kmalloc 和 kzalloc)
  2. kmalloc 分配的内存大小有限制(128KB),而 vmalloc 没有限制;
  3. kmalloc 可以保证分配的内存物理地址是连续的,但是 vmalloc 不能保证;
  4. kmalloc 分配内存的过程可以是原子过程(使用 GFP_ATOMIC),而 vmalloc 分配内存时则可能产生阻塞;
  5. kmalloc 分配内存的开销小,因此 kmalloc 比 vmalloc 要快;

一般情况下,内存只有在要被 DMA 访问的时候才需要物理上连续,但为了性能上的考虑,内核中一般使用 kmalloc(),而只有在需要获得大块内存时才使用 vmalloc()。

4.4 分配选择原则:

  1. 小内存(< 128k)用kmalloc,大内存用vmalloc或get_free_page
  2. 如果需要比较大的内存,并且要求使用效率较高时用get_free_page,否则用vmalloc

4.5 代码示例:

  1. #include <linux/module.h>
  2. #include <linux/kernel.h>
  3. #include <linux/fs.h>
  4. #include <linux/cdev.h>
  5. #include <linux/uaccess.h>
  6. #include <linux/wait.h>
  7. #include <linux/sched.h>
  8. #include <linux/poll.h>
  9. #include <linux/mm.h>
  10. #include <linux/slab.h>
  11. #include "mychar.h"
  12. #define BUF_LEN 100
  13. int major = 11;
  14. int minor = 0;
  15. int mychar_num = 1;
  16. struct mychar_dev
  17. {
  18. struct cdev mydev;
  19. char mydev_buf[BUF_LEN];
  20. int curlen;
  21. struct mutex lock;
  22. /*Read wait queue and write wait queue*/
  23. wait_queue_head_t rq;
  24. wait_queue_head_t wq;
  25. struct fasync_struct *pasync_obj;
  26. };
  27. struct mychar_dev *pgmydev = NULL;
  28. int mychar_open(struct inode *pnode, struct file *pfile)
  29. {
  30. pfile->private_data = container_of(pnode->i_cdev, struct mychar_dev, mydev);
  31. printk("mychar_open\n");
  32. return 0;
  33. }
  34. int mychar_close(struct inode *pnode, struct file *pfile)
  35. {
  36. //printk("mychar_close\n");
  37. /*C90 requires printk after the variable declaration*/
  38. struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
  39. if(pmydev->pasync_obj != NULL)
  40. fasync_helper(-1,pfile,0, &pmydev->pasync_obj);
  41. return 0;
  42. }
  43. ssize_t mychar_read(struct file *pfile, char __user *puser, size_t count, loff_t *p_pos)
  44. {
  45. struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
  46. int size = 0;
  47. int ret = 0;
  48. mutex_lock(&pmydev->lock);
  49. if(pmydev->curlen <= 0)
  50. {
  51. if(pfile->f_flags & O_NONBLOCK)
  52. {//non-blocking
  53. mutex_unlock(&pmydev->lock);
  54. printk("O_NONBLOCK No Data Read\n");
  55. return -1;
  56. }
  57. else
  58. {//blocking
  59. mutex_unlock(&pmydev->lock);
  60. ret = wait_event_interruptible(pmydev->rq,pmydev->curlen > 0);
  61. if(ret)
  62. {
  63. printk("Wake up by signal\n");
  64. return -ERESTARTSYS;
  65. }
  66. mutex_lock(&pmydev->lock);
  67. }
  68. }
  69. if(count > pmydev->curlen)
  70. {
  71. size = pmydev->curlen;
  72. }
  73. else
  74. {
  75. size = count;
  76. }
  77. ret = copy_to_user(puser, pmydev->mydev_buf, size);
  78. if(ret)
  79. {
  80. mutex_unlock(&pmydev->lock);
  81. printk("copy_to_user failed\n");
  82. return -1;
  83. }
  84. memcpy(pmydev->mydev_buf, pmydev->mydev_buf + size, pmydev->curlen - size);
  85. pmydev->curlen = pmydev->curlen - size;
  86. mutex_unlock(&pmydev->lock);
  87. /*Wake up interrupt*/
  88. wake_up_interruptible(&pmydev->wq);
  89. return size;
  90. }
  91. ssize_t mychar_write(struct file *pfile, const char __user *puser, size_t count, loff_t *p_pos)
  92. {
  93. int size = 0;
  94. int ret = 0;
  95. struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
  96. mutex_lock(&pmydev->lock);
  97. if(pmydev->curlen >= BUF_LEN)
  98. {
  99. if(pfile->f_flags & O_NONBLOCK)
  100. {
  101. mutex_unlock(&pmydev->lock);
  102. printk("O_NONBLOCK can not write\n");
  103. return -1;
  104. }
  105. else
  106. {
  107. mutex_unlock(&pmydev->lock);
  108. ret = wait_event_interruptible(pmydev->wq,
  109. pmydev->curlen < BUF_LEN);
  110. if(ret)
  111. {
  112. printk("wake up by signal\n");
  113. return -ERESTARTSYS;
  114. }
  115. mutex_lock(&pmydev->lock);
  116. }
  117. }
  118. if(count > BUF_LEN - pmydev->curlen)
  119. {
  120. size = BUF_LEN - pmydev->curlen;
  121. }
  122. else
  123. {
  124. size = count;
  125. }
  126. ret = copy_from_user(pmydev->mydev_buf + pmydev->curlen, puser, size);
  127. if(ret)
  128. {
  129. mutex_unlock(&pmydev->lock);
  130. printk("copy_from_user failed\n");
  131. return -1;
  132. }
  133. pmydev->curlen += size;
  134. mutex_unlock(&pmydev->lock);
  135. /*Wake up interrupt*/
  136. wake_up_interruptible(&pmydev->rq);
  137. if(pmydev->pasync_obj != NULL)
  138. {
  139. kill_fasync(&pmydev->pasync_obj, SIGIO, POLL_IN);
  140. }
  141. return size;
  142. }
  143. long mychar_ioctl(struct file *pfile, unsigned int cmd, unsigned long arg)
  144. {
  145. int __user *pret = (int *)arg;
  146. int maxlen = BUF_LEN;
  147. int ret = 0;
  148. struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
  149. switch(cmd)
  150. {
  151. case MYCHAR_IOCTL_GET_MAXLEN:
  152. ret = copy_to_user(pret, &maxlen, sizeof(int));
  153. if(ret)
  154. {
  155. printk("copy_to_user MAXLEN failed\n");
  156. return -1;
  157. }
  158. break;
  159. case MYCHAR_IOCTL_GET_CURLEN:
  160. mutex_lock(&pmydev->lock);
  161. ret = copy_to_user(pret, &pmydev->curlen, sizeof(int));
  162. mutex_unlock(&pmydev->lock);
  163. if(ret)
  164. {
  165. printk("copy_to_user MAXLEN failed\n");
  166. return -1;
  167. }
  168. break;
  169. default:
  170. printk("The cmd is unknow\n");
  171. return -1;
  172. }
  173. return 0;
  174. }
  175. unsigned int mychar_poll(struct file *pfile, poll_table *ptb)
  176. {
  177. struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
  178. unsigned int mask = 0;
  179. /*It not block. Adds the wait queue to the table*/
  180. poll_wait(pfile,&pmydev->rq,ptb);
  181. poll_wait(pfile,&pmydev->wq,ptb);
  182. mutex_lock(&pmydev->lock);
  183. if(pmydev->curlen > 0)
  184. {
  185. mask |= POLLIN | POLLRDNORM;
  186. }
  187. if(pmydev->curlen < BUF_LEN)
  188. {
  189. mask |= POLLOUT | POLLWRNORM;
  190. }
  191. mutex_unlock(&pmydev->lock);
  192. return mask;
  193. }
  194. int mychar_fasync(int fd,struct file *pfile, int mode)
  195. {
  196. struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
  197. return fasync_helper(fd, pfile, mode, &pmydev->pasync_obj);
  198. }
  199. struct file_operations myops = {
  200. .owner = THIS_MODULE,
  201. .open = mychar_open,
  202. .release = mychar_close,
  203. .read = mychar_read,
  204. .write = mychar_write,
  205. .unlocked_ioctl = mychar_ioctl,
  206. .poll = mychar_poll,
  207. .fasync = mychar_fasync,
  208. };
  209. int __init mychar_init(void)
  210. {
  211. int ret = 0;
  212. dev_t devno = MKDEV(major,minor);
  213. /*Apply for device number*/
  214. ret = register_chrdev_region(devno, mychar_num, "mychar");
  215. if(ret)
  216. {
  217. ret = alloc_chrdev_region(&devno, minor, mychar_num, "mychar");
  218. if(ret)
  219. {
  220. printk("get devno failed\n");
  221. return -1;
  222. }
  223. printk("copy_to_user failed\n");
  224. major = MAJOR(devno);//Easy to miss *****
  225. }
  226. pgmydev = (struct mychar_dev *)kmalloc(sizeof(struct mychar_dev), GFP_KERNEL);
  227. if(NULL == pgmydev)
  228. {
  229. unregister_chrdev_region(devno, mychar_num);
  230. printk("kmallc for struct mychar_dev failed\n");
  231. return -1;
  232. }
  233. /*Assign the 'struct cdev' a set of operation functions*/
  234. cdev_init(&pgmydev->mydev, &myops);
  235. /*Add 'struct cdev' to the kernel's data structure*/
  236. pgmydev->mydev.owner = THIS_MODULE;
  237. cdev_add(&pgmydev->mydev, devno, mychar_num);//add to Hash.
  238. /*initialize the wait queue header*/
  239. init_waitqueue_head(&pgmydev->rq);
  240. init_waitqueue_head(&pgmydev->wq);
  241. mutex_init(&pgmydev->lock);
  242. return 0;
  243. }
  244. void __exit mychar_exit(void)
  245. {
  246. dev_t devno = MKDEV(major,minor);
  247. cdev_del(&pgmydev->mydev);
  248. //printk("mychar will exit\n");
  249. unregister_chrdev_region(devno, mychar_num);
  250. kfree(pgmydev);
  251. pgmydev = NULL;
  252. }
  253. MODULE_LICENSE("GPL");
  254. module_init(mychar_init);
  255. module_exit(mychar_exit);

五、IO访问-------访问外设控制器的寄存器

CPU不会直接和外设连接,需要经过一个对应的控制器,卡状的就叫适配器,芯片状的就叫控制器。外设直接和SOC上的控制器连接的叫一级外设。挂在总线上的叫二级外设。

两种方式:

  1. IO端口:X86上用IO指令访问
  2. IO内存:外设寄存器在SOC芯片手册上都有相应物理地址

IO内存访问接口:

  1. static inline void __iomem *ioremap(unsigned long offset, unsigned long size)
  2. /*
  3. 功能:实现IO管脚的映射
  4. 参数:offset:该管脚的偏移地址
  5. Size:该管脚映射空间的大小
  6. 返回值:成功返回映射的虚拟地址,失败NULL
  7. */
  8. static inline void iounmap(volatile void __iomem *addr)
  9. /*
  10. 功能:解除io管脚的映射
  11. 参数:addr:io管脚映射的地址
  12. */
  13. unsigned readb(void *addr);//1字节 或ioread8(void *addr)
  14. unsigned readw(void *addr);//2字节 或ioread16(void *addr)
  15. unsigned readl(void *addr);//4字节 或ioread32(void *addr)
  16. /*
  17. 功能:读取寄存器的值
  18. 参数:addr 地址
  19. 返回值:读到的数据
  20. */
  21. void writeb(unsigned value, void *addr);//1字节 或iowrite8(u8 value, void *addr)
  22. void writew(unsigned value, void *addr);//2字节 或iowrite16(u16 value, void *addr)
  23. void writel(unsigned value, void *addr);//4字节 或iowrite32(u32 value, void *addr)
  24. /*
  25. 功能:向指定的寄存器中,写入数据。
  26. 参数:value:待写入寄存器中的数据
  27. Address:寄存器的虚拟地址
  28. */

六、led驱动示例

  1. 读原理图

  2. 查阅SOC芯片手册

    GPX2_7 led2 GPX2CON----0x11000C40---28~31-----0001 GPX2DAT-----0x11000C44-----7

    GPX1_0 led3 GPX1CON----0x11000C20---0~3-----0001 GPX1DAT----0x11000C24-----0

    GPF3_4 led4 GPF3CON----0x114001E0---16~19-----0001 GPF3DAT----0x114001E4-----4

    GPF3_5 led5 GPF3CON----0x114001E0---20~23-----0001 GPF3DAT----0x114001E4-----5

  3. 编写驱动

    a. 设计设备数据类型

    1. struct myled_dev
    2. {
    3. struct cdev mydev;
    4. unsigned long * led2con;
    5. unsigned long * led2dat;
    6. unsigned long * led3con;
    7. unsigned long * led3dat;
    8. unsigned long * led4con;
    9. unsigned long * led4dat;
    10. unsigned long * led5con;
    11. unsigned long * led5dat;
    12. };

    b. 考虑需要支持的函数

    c. 模块入口:ioremap + 设置成输出

    d. 模块出口:iounmap

    e. 编写关灯函数和开灯函数,实现ioctl

volatile:对指针指向的空间不做任何优化,不加这个关键字会把指针的值放到cpu的寄存器中,加快访问速度。加上这个关键字会阻止这种优化。

代码示例:

leddrv.h

  1. #ifndef LED_DRIVER_H
  2. #define LED_DRIVER_H
  3. #define LED_DEV_MAGIC 'g'
  4. #define MY_LED_OFF _IO(LED_DEV_MAGIC,0)
  5. #define MY_LED_ON _IO(LED_DEV_MAGIC,1)
  6. #endif

leddrv.c

  1. #include <linux/module.h>
  2. #include <linux/kernel.h>
  3. #include <linux/fs.h>
  4. #include <linux/cdev.h>
  5. #include <linux/wait.h>
  6. #include <linux/sched.h>
  7. #include <linux/poll.h>
  8. #include <linux/slab.h>
  9. #include <linux/mm.h>
  10. #include <linux/io.h>
  11. #include <asm/uaccess.h>
  12. #include <asm/atomic.h>
  13. #include "leddrv.h"
  14. #define GPX1CON 0x11000C20
  15. #define GPX1DAT 0x11000C24
  16. #define GPX2CON 0x11000C40
  17. #define GPX2DAT 0x11000C44
  18. #define GPF3CON 0x114001E0
  19. #define GPF3DAT 0x114001E4
  20. int major = 11;
  21. int minor = 0;
  22. int myled_num = 1;
  23. struct myled_dev
  24. {
  25. struct cdev mydev;
  26. volatile unsigned long *pled2_con;
  27. volatile unsigned long *pled2_dat;
  28. volatile unsigned long *pled3_con;
  29. volatile unsigned long *pled3_dat;
  30. volatile unsigned long *pled4_con;
  31. volatile unsigned long *pled4_dat;
  32. volatile unsigned long *pled5_con;
  33. volatile unsigned long *pled5_dat;
  34. };
  35. struct myled_dev *pgmydev = NULL;
  36. int myled_open(struct inode *pnode,struct file *pfile)
  37. {
  38. pfile->private_data =(void *) (container_of(pnode->i_cdev,struct myled_dev,mydev));
  39. return 0;
  40. }
  41. int myled_close(struct inode *pnode,struct file *pfile)
  42. {
  43. return 0;
  44. }
  45. void led_on(struct myled_dev *pmydev,int ledno)
  46. {
  47. switch(ledno)
  48. {
  49. case 2:
  50. writel(readl(pmydev->pled2_dat) | (0x1 << 7),pmydev->pled2_dat);
  51. break;
  52. case 3:
  53. writel(readl(pmydev->pled3_dat) | (0x1),pmydev->pled3_dat);
  54. break;
  55. case 4:
  56. writel(readl(pmydev->pled4_dat) | (0x1 << 4),pmydev->pled4_dat);
  57. break;
  58. case 5:
  59. writel(readl(pmydev->pled5_dat) | (0x1 << 5),pmydev->pled5_dat);
  60. break;
  61. }
  62. }
  63. void led_off(struct myled_dev *pmydev,int ledno)
  64. {
  65. switch(ledno)
  66. {
  67. case 2:
  68. writel(readl(pmydev->pled2_dat) & (~(0x1 << 7)),pmydev->pled2_dat);
  69. break;
  70. case 3:
  71. writel(readl(pmydev->pled3_dat) & (~(0x1)),pmydev->pled3_dat);
  72. break;
  73. case 4:
  74. writel(readl(pmydev->pled4_dat) & (~(0x1 << 4)),pmydev->pled4_dat);
  75. break;
  76. case 5:
  77. writel(readl(pmydev->pled5_dat) & (~(0x1 << 5)),pmydev->pled5_dat);
  78. break;
  79. }
  80. }
  81. long myled_ioctl(struct file *pfile,unsigned int cmd,unsigned long arg)
  82. {
  83. struct myled_dev *pmydev = (struct myled_dev *)pfile->private_data;
  84. if(arg < 2 || arg > 5)
  85. {
  86. return -1;
  87. }
  88. switch(cmd)
  89. {
  90. case MY_LED_ON:
  91. led_on(pmydev,arg);
  92. break;
  93. case MY_LED_OFF:
  94. led_off(pmydev,arg);
  95. break;
  96. default:
  97. return -1;
  98. }
  99. return 0;
  100. }
  101. struct file_operations myops = {
  102. .owner = THIS_MODULE,
  103. .open = myled_open,
  104. .release = myled_close,
  105. .unlocked_ioctl = myled_ioctl,
  106. };
  107. void ioremap_ledreg(struct myled_dev *pmydev)
  108. {
  109. pmydev->pled2_con = ioremap(GPX2CON,4);
  110. pmydev->pled2_dat = ioremap(GPX2DAT,4);
  111. pmydev->pled3_con = ioremap(GPX1CON,4);
  112. pmydev->pled3_dat = ioremap(GPX1DAT,4);
  113. pmydev->pled4_con = ioremap(GPF3CON,4);
  114. pmydev->pled4_dat = ioremap(GPF3DAT,4);
  115. pmydev->pled5_con = pmydev->pled4_con;
  116. pmydev->pled5_dat = pmydev->pled4_dat;
  117. }
  118. void set_output_ledconreg(struct myled_dev *pmydev)
  119. {
  120. writel((readl(pmydev->pled2_con) & (~(0xF << 28))) | (0x1 << 28),pmydev->pled2_con);
  121. writel((readl(pmydev->pled3_con) & (~(0xF))) | (0x1),pmydev->pled3_con);
  122. writel((readl(pmydev->pled4_con) & (~(0xF << 16))) | (0x1 << 16),pmydev->pled4_con);
  123. writel((readl(pmydev->pled5_con) & (~(0xF << 20))) | (0x1 << 20),pmydev->pled5_con);
  124. writel(readl(pmydev->pled2_dat) & (~(0x1 << 7)),pmydev->pled2_dat);
  125. writel(readl(pmydev->pled3_dat) & (~(0x1)),pmydev->pled3_dat);
  126. writel(readl(pmydev->pled4_dat) & (~(0x1 << 4)),pmydev->pled4_dat);
  127. writel(readl(pmydev->pled5_dat) & (~(0x1 << 5)),pmydev->pled5_dat);
  128. }
  129. void iounmap_ledreg(struct myled_dev *pmydev)
  130. {
  131. iounmap(pmydev->pled2_con);
  132. pmydev->pled2_con = NULL;
  133. iounmap(pmydev->pled2_dat);
  134. pmydev->pled2_dat = NULL;
  135. iounmap(pmydev->pled3_con);
  136. pmydev->pled3_con = NULL;
  137. iounmap(pmydev->pled3_dat);
  138. pmydev->pled3_dat = NULL;
  139. iounmap(pmydev->pled4_con);
  140. pmydev->pled4_con = NULL;
  141. iounmap(pmydev->pled4_dat);
  142. pmydev->pled4_dat = NULL;
  143. pmydev->pled5_con = NULL;
  144. pmydev->pled5_dat = NULL;
  145. }
  146. int __init myled_init(void)
  147. {
  148. int ret = 0;
  149. dev_t devno = MKDEV(major,minor);
  150. /*申请设备号*/
  151. ret = register_chrdev_region(devno,myled_num,"myled");
  152. if(ret)
  153. {
  154. ret = alloc_chrdev_region(&devno,minor,myled_num,"myled");
  155. if(ret)
  156. {
  157. printk("get devno failed\n");
  158. return -1;
  159. }
  160. major = MAJOR(devno);//容易遗漏,注意
  161. }
  162. pgmydev = (struct myled_dev *)kmalloc(sizeof(struct myled_dev),GFP_KERNEL);
  163. if(NULL == pgmydev)
  164. {
  165. unregister_chrdev_region(devno,myled_num);
  166. printk("kmalloc failed\n");
  167. return -1;
  168. }
  169. memset(pgmydev,0,sizeof(struct myled_dev));
  170. /*给struct cdev对象指定操作函数集*/
  171. cdev_init(&pgmydev->mydev,&myops);
  172. /*将struct cdev对象添加到内核对应的数据结构里*/
  173. pgmydev->mydev.owner = THIS_MODULE;
  174. cdev_add(&pgmydev->mydev,devno,myled_num);
  175. /*ioremap*/
  176. ioremap_ledreg(pgmydev);
  177. /*con-register set output*/
  178. set_output_ledconreg(pgmydev);
  179. return 0;
  180. }
  181. void __exit myled_exit(void)
  182. {
  183. dev_t devno = MKDEV(major,minor);
  184. /*iounmap*/
  185. iounmap_ledreg(pgmydev);
  186. cdev_del(&pgmydev->mydev);
  187. unregister_chrdev_region(devno,myled_num);
  188. kfree(pgmydev);
  189. pgmydev = NULL;
  190. }
  191. MODULE_LICENSE("GPL");
  192. module_init(myled_init);
  193. module_exit(myled_exit);

testled.c

  1. #include <sys/types.h>
  2. #include <sys/stat.h>
  3. #include <fcntl.h>
  4. #include <sys/ioctl.h>
  5. #include <unistd.h>
  6. #include <stdio.h>
  7. #include "leddrv.h"
  8. int main(int argc,char *argv[])
  9. {
  10. int fd = -1;
  11. int onoff = 0;
  12. int no = 0;
  13. if(argc < 4)
  14. {
  15. printf("The argument is too few\n");
  16. return 1;
  17. }
  18. sscanf(argv[2],"%d",&onoff);
  19. sscanf(argv[3],"%d",&no);
  20. if(no < 2 || no > 5)
  21. {
  22. printf("len-no is invalid\n");
  23. return 2;
  24. }
  25. fd = open(argv[1],O_RDONLY);
  26. if(fd < 0)
  27. {
  28. printf("open %s failed\n",argv[1]);
  29. return 3;
  30. }
  31. if(onoff)
  32. {
  33. ioctl(fd,MY_LED_ON,no);
  34. }
  35. else
  36. {
  37. ioctl(fd,MY_LED_OFF,no);
  38. }
  39. close(fd);
  40. fd = -1;
  41. return 0;
  42. }

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/183436?site
推荐阅读
相关标签
  

闽ICP备14008679号