当前位置:   article > 正文

pytorch 自编码器实现图像的降噪_自编码器去噪

自编码器去噪

自编码器

自动编码器是一种无监督的深度学习算法,它学习输入数据的编码表示,然后重新构造与输出相同的输入。它由编码器和解码器两个网络组成。编码器将高维输入压缩成低维潜在(也称为潜在代码或编码空间) ,以从中提取最相关的信息,而解码器则解压缩编码数据并重新创建原始输入。

自编码器的输入和输出应该尽可能的相似。

通过输入含有噪声的图像,编码器在编码的过程中会存在信息丢失,将输入和输出最相似的特征保留下来,通过解码器得到最后的输出。在这个转换的过程中实现了图像的去噪。

自编码器主要的用途其实是用于降维,将高维的数据编码为一组向量,解码器通过解码得到输出。

数据集导入可视化

  1. import torchvision
  2. import matplotlib.pyplot as plt
  3. from torch.utils.data import DataLoader
  4. import numpy as np
  5. import random
  6. import PIL.Image as Image
  7. import torchvision.transforms as tra
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/207041
推荐阅读
相关标签
  

闽ICP备14008679号