当前位置:   article > 正文

贪心高性能神经网络与AI芯片~学习笔记总计1_贪心科技ai芯片

贪心科技ai芯片

        本人正在学习 贪心科技高性能神经网络与AI芯片应用研修课程,在此做学习笔记,欢迎一起交流学习,共同进步

一、序言

   

本文承接第一部分,基于对卷积神经网络网络组成的认识,开始学习如何去使用卷积神经网络进行对应的训练。模型评估作为优化部分,我们将放在第三个部分中再好好讲他的作用以及意义~

   训练的基本流程主要是数据集引入、训练及参数设置、验证及反馈这三个步骤,我们现在分三个步骤来认识一下这个训练的基本流程。

   PS:我更新真是快啊~

## 二、训练流程

## 1、数据集引入

   本文根据对应的实验要求,主要采用的是Pytorch中自带的MNIST数据集。MNIST数据集由于比较基础,历年来都是被各种玩坏的主要对象~

   引入数据集的时候主要需要注意的是预处理的一个操作,在这里主要用的是ToTensor和Normalize两个函数进行归一化处理。其实也不一定需要Normalize这个函数,因为训练其实都是可以进行的。

   但是这里需要注意一下,因为导入数据集的时候操作是固定的。所以为了保证这个操作固定,就最好是用Compose把他们固定起来,不然在后续操作中可能就会添麻烦。

   如果你在做自己的手写图像识别,并且老是正确率比较低,那么一定注意一下这几个点。

   第一个是图像的前后的前后处理的时候是不一样的,很容易直接用自己的图像直接拿去识别了,但是因为之前训练集中的都是经过Compose结合后的组合处理后的图像。但是你直接拿去处理的图像是没有经过处理的,输入到模型中的和此前的格式是不一样的。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/219120
推荐阅读
相关标签
  

闽ICP备14008679号