当前位置:   article > 正文

力扣面试经典150 —— 6-10题

力扣面试经典150 —— 6-10题
  • 力扣面试经典150题
  • 在 VScode 中安装 LeetCode 插件即可使用 VScode 刷题,安装 Debug LeetCode 插件可以免费 debug
  • 本文使用 python 语言解题,文中 “数组” 通常指 python 列表;文中 “指针” 通常指 python 列表索引

6. [中等] 轮转数组

6.1 解法1:使用额外的数组

  • 借助一个额外数据将各个元素放到新位置。注意到从整体上看,输出数组可以看作是在 k % len(nums) 位置截断然后重新组合,可以用 python 的列表操作简单地如下实现
    class Solution:
        def rotate(self, nums: List[int], k: int) -> None:
            k = k % len(nums)
            res = nums[-k:] + nums[:-k]
            nums[:] = res
    
    • 1
    • 2
    • 3
    • 4
    • 5
    这其实等价于用两个指针分别遍历截断的两部分,并将元素依次复制到辅助数组
  • 时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( n ) O(n) O(n)

6.2 解法2:数组翻转

  • 和方法一一样,注意到输出数组可以看作是在 k % len(nums) 位置截断然后重新组合,这可以通过三次列表翻转实现,示意如下
    nums = "----->-->"; k =3
    result = "-->----->";
    
    reverse "----->-->" we can get "<--<-----"
    reverse "<--" we can get "--><-----"
    reverse "<-----" we can get "-->----->"
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    下面给出代码,使用双指针进行翻转操作
    class Solution:
        def rotate(self, nums: List[int], k: int) -> None:
            def _reverse(start, end):
                while start < end:
                    t = nums[start]
                    nums[start] = nums[end]
                    nums[end] = t
                    start += 1
                    end -= 1
    
            k = k % len(nums)
            _reverse(0, len(nums)-1)
            _reverse(0, k-1)
            _reverse(k, len(nums)-1)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
  • 时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( 1 ) O(1) O(1)

7. [简单] 买卖股票的最佳时机

7.1 解法1:暴力法

  • 直接遍历所有可能的买卖组合情况,但这种方法会超时
    def maxProfit(self, prices: List[int]) -> int:
            # 暴力法:超时
            profit = -float('inf')
            for i in range(len(prices)-1):
                buy = prices[i]
                for j in range(i+1, len(prices)):
                    sell = prices[j]
                    if sell > buy and sell - buy > profit:
                        profit = sell - buy
            profit = 0 if profit < 0 else profit
            return profit
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
  • 时间复杂度 O ( n 2 ) O(n^2) O(n2),空间复杂度 O ( 1 ) O(1) O(1)

7.2 解法2:贪心

  • 只遍历一遍,在每个时刻贪心地计算可能的最大利润。为此,需要动态地更新截止目前为止的最低买入价
    class Solution:
        def maxProfit(self, prices: List[int]) -> int:
            # 贪心:动态维护历史最低价,进而利用它计算理论最大收益
            min_price = float('inf')
            max_profit = -float('inf')
            for p in prices:
                # 动态维护历史最低价
                if p < min_price:
                    min_price = p
    
                # 基于历史最低价得到在当前时刻卖出的理论最大收益
                profit = p - min_price
                if profit > max_profit:
                    max_profit = profit
    
            max_profit = 0 if max_profit < 0 else max_profit
            return max_profit
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
  • 时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( 1 ) O(1) O(1)

8. [中等] 买卖股票的最佳时机II

8.1 解法1:贪心

  • 基于贪心的思想,实现最大利润意味着每一次可能的盈利都被把握。我们变量把股价曲线折线图,在每一个时刻执行收益最大化操作,即把每一个上升段都加入总收益中,水平或下降段则跳过
    class Solution:
        def maxProfit(self, prices: List[int]) -> int:
            max_profit = 0
            for i in range(len(prices)-1):
                profit = prices[i+1] - prices[i]
                if profit > 0:
                    max_profit += profit
            return max_profit
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
  • 时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( 1 ) O(1) O(1)

8.2 解法2:动态规划

  • 题目设置满足动态规划的三要素
    1. 无后效性:当前和未来的交易操作不会影响过去交易操作的收益
    2. 最优子结构:在整个交易过程中实现最大收益,意味着交易过程中的任意一个时间段的收益都是最优的。问题最优解的结构包含其子问题的最优解
    3. 重叠子问题:当我们递归地自顶向下分解时,即把 “最大化前n天收益” 不断地递归分解为 “最大化前n-1天收益,同时最大化第n-1天收益” 时,出现了要在递归过程中重复求解的重叠子问题(比如 “最大化前1天收益”),这提示我们使用递推式自底向上的构造解(动态规划的自底向上形式),或使用带备忘录的递归法(动态规划的自顶向下形式)
  • 我们使用自底向上的动态规划形式,这时需要构造递推公式(动态规划中称 “状态转移方程”)。定义状态 dp[i][0]dp[i][1] 分别表示第 i i i 天交易完后手里没有和持有股票的最大利润。
    1. 对于 dp[i][0] 来说,第 i i i 天交易完后手里没有股票,意味着要么前一天就没有,要么今天卖了,递推式为
      d p [ i ] [ 0 ] = max ⁡ { d p [ i − 1 ] [ 0 ] , d p [ i − 1 ] [ 1 ] + p r i c e s [ i ] } dp[i][0]=\max\{dp[i−1][0],dp[i−1][1]+prices[i]\} dp[i][0]=max{dp[i1][0],dp[i1][1]+prices[i]}
    2. 对于 dp[i][1] 来说,第 i i i 天交易完后手里有股票,意味着要么前一天有,要么今天刚买,递推式为
      d p [ i ] [ 1 ] = max ⁡ { d p [ i − 1 ] [ 1 ] , d p [ i − 1 ] [ 0 ] − p r i c e s [ i ] } dp[i][1]=\max\{dp[i−1][1],dp[i−1][0]−prices[i]\} dp[i][1]=max{dp[i1][1],dp[i1][0]prices[i]}
    3. 根据问题定义,第0天交易时有
      d p [ 0 ] [ 0 ] = 0 , d p [ 0 ] [ 1 ] = − p r i c e s [ 0 ] dp[0][0]=0,\quad dp[0][1]=−prices[0] dp[0][0]=0,dp[0][1]=prices[0]
    4. 由于全部交易结束后,持有股票的收益一定低于不持有股票的收益,最后返回 d p [ n − 1 ] [ 0 ] dp[n−1][0] dp[n1][0] 即可
  • 注意到以上状态转移方程1、2中,dp[i] 仅与 dp[i-1] 有关,而与更早的状态都无关,因此不必存储这些无关的状态,只需要将 dp[i−1][0]dp[i−1][1] 存放在两个变量中,通过它们计算出 dp[i][0]dp[i][1] 并存回对应的变量,以便于第 i + 1 i+1 i+1 天的状态转移计算即可
    class Solution:
        def maxProfit(self, prices: List[int]) -> int:
            dp0 = 0             # 今日交易完后手里没有股票的最大利润
            dp1 = -prices[0]    # 今日交易完后手里有一支股票的最大利润
            for i in range(1, len(prices)):
                dp0_ = max(dp0, dp1 + prices[i])
                dp1_ = max(dp1, dp0 - prices[i])
                dp0, dp1 = dp0_, dp1_            
            return dp0
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  • 时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( 1 ) O(1) O(1)

9. [中等] 跳跃游戏

9.1 解法1:贪心模拟

  • 直接模拟整个转移过程,每次都贪心地跳到能去向的最远处,直到达到终点或无法前进
    class Solution:
        def canJump(self, nums: List[int]) -> bool:
            cur_pos = next_pos = 0
            max_range = nums[cur_pos]   # 当前可达的最大索引位置
            while True:
                # 若从当前位置可以直接到目标,退出
                if max_range >= len(nums) - 1:
                    return True
    
                # 考察从当前位置可达的每个新位置可覆盖的最大范围, 贪心地选择可达范围最大处作为转移到的索引位置 next_pos
                for steps in range(1, nums[cur_pos] + 1):
                    next_range = cur_pos + steps + nums[cur_pos + steps]
                    if next_range > max_range:
                        next_pos = cur_pos + steps
                        max_range = next_range
                
                # 如果当前位置已经是最佳的,且已知当前 max_range 无法到达目标,退出
                if next_pos == cur_pos:
                    return False
    
                # 去向新索引位置
                cur_pos = next_pos
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
  • 时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( 1 ) O(1) O(1)

9.2 解法2:贪心

  • 对于每一个可达位置 x x x,它使得 x + 1 , x + 2 , ⋯   , x + nums [ x ] x+1,x+2,⋯ ,x+\text{nums}[x] x+1,x+2,,x+nums[x] 这些连续的位置都可以到达。利用贪心的思想,我们遍历数组,并在每一步维护当前可达的最大状态,如果发现最后的位置可达则返回 true,反之若遍历结束后最后位置仍不可达则返回 false
    class Solution:
        def canJump(self, nums: List[int]) -> bool:
            max_range = 0
            for i, step in enumerate(nums):
                if i <= max_range:
                    if i + step > max_range:
                        max_range = i + step
                    if max_range >= len(nums) - 1:
                        return True
            return False
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
  • 时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( 1 ) O(1) O(1)

10. [中等] 跳跃游戏II

10.1 解法1:贪心模拟

  • 和 9.1 完全一直,直接模拟整个转移过程,每次都贪心地跳到能去向的最远处,直到达到终点或无法前进。模拟的同时记录总跳跃次数并返回
    class Solution:
        def jump(self, nums: List[int]) -> int:
            # 特殊情况直接退出
            if len(nums) == 1:
                return 0
    
            cur_pos = next_pos = step_cnt = 0
            max_range = nums[cur_pos]
            while True:
                # 若从当前位置可以直接到目标,退出
                if max_range >= len(nums) - 1:
                    return step_cnt + 1
    
                # 考察每一个新位置可以覆盖的最大范围,next_pos 设置为范围最大新索引位置
                for steps in range(1, nums[cur_pos] + 1):
                    next_range = cur_pos + steps + nums[cur_pos + steps]
                    if next_range > max_range:
                        next_pos = cur_pos + steps
                        max_range = next_range
    
                # 去向新索引位置
                cur_pos = next_pos
                step_cnt += 1
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
  • 时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( 1 ) O(1) O(1)
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/228670?site
推荐阅读
相关标签
  

闽ICP备14008679号