当前位置:   article > 正文

报错解决MaxRetryError(“HTTPSConnectionPool(host=‘huggingface.co‘, port=443):xxx“)_oserror: can't load tokenizer for 'bert-base-uncas

oserror: can't load tokenizer for 'bert-base-uncased'. if you were trying to

完整的错误信息

'(MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /bert-base-uncased/resolve/main/vocab.txt (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7f1320354880>, 'Connection to huggingface.co timed out. (connect timeout=10)'))"), '(Request ID: 625af900-631f-4614-9358-30364ecacefe)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt
'(MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /bert-base-uncased/resolve/main/added_tokens.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7f1320354d60>, 'Connection to huggingface.co timed out. (connect timeout=10)'))"), '(Request ID: 1679a995-7441-4afe-a685-9a7bd6da9f2a)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/added_tokens.json
'(MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /bert-base-uncased/resolve/main/special_tokens_map.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7f13202fb250>, 'Connection to huggingface.co timed out. (connect timeout=10)'))"), '(Request ID: 9af5b73e-5230-45d7-8886-5d37d38f09a8)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/special_tokens_map.json
'(MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /bert-base-uncased/resolve/main/tokenizer_config.json (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7f13202fb730>, 'Connection to huggingface.co timed out. (connect timeout=10)'))"), '(Request ID: 12136040-d033-4099-821c-dcb80fb50018)')' thrown while requesting HEAD https://huggingface.co/bert-base-uncased/resolve/main/tokenizer_config.json
Traceback (most recent call last):
  File "/tmp/pycharm_project_494/Zilean-Classifier/main.py", line 48, in <module>
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
  File "/root/miniconda3/envs/DL/lib/python3.8/site-packages/transformers/tokenization_utils_base.py", line 1838, in from_pretrained
    raise EnvironmentError(
OSError: Can't load tokenizer for 'bert-base-uncased'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure 'bert-base-uncased' is the correct path to a directory containing all relevant files for a BertTokenizer tokenizer.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

首先造成这种错误的原因主要是因为你的服务器没有办法连接huggingface的原因,你可以直接在你的服务器上尝试能否直接ping

ping huggingface.co
  • 1

那我的机器就是没有数据传输过来,当然前提是你自己的服务器一定要有网络连接(可以尝试ping www.baidu.com来检测自己机器是否有网络)。

解决方案1

使用VPN,这个方法比较适用机器是你自己的,如果机器不是你的,你搭VPN比较麻烦,因为租的服务器会定时清理,在Linux搭建VPN也很简单,大家搜索一哈有很多方案

解决方案2【推荐】

第二种方式适用于租赁的机器的情况,就是直接将本地的下载好(你的本地也需要能访问外网)的预训练模型上传上去,如果你已经在你的本地简单跑过代码了,没有就去官网下载,首先我们确定我们本地文件所处的路径【windows下应该在你的用户文件下面又有个.cache,注意打开隐藏文件夹】:

  • 将指定的模型下载到本地【本地机器需要科学上网】

    from transformers import BertModel, BertTokenizer
    
    # 使用bert-large-uncased
    model = BertModel.from_pretrained('bert-large-uncased')
    tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')
    
    • 1
    • 2
    • 3
    • 4
    • 5

    此时你的机器上会出现如下图片:
    在这里插入图片描述

  • 找到本地下载好的模型文件

    • 如果你是windows用户,你的用户User文件下面又有个.cache/huggingface/hub/,注意打开隐藏文件
    • 如果你是macos用户在下面地址中
      ~/.cache/huggingface/hub/models--bert-base-uncased
      
      • 1
  • 上传文件到服务器上
    将本地文件上传到服务器的下面地址中

    ~/.cache/huggingface/hub/models--bert-base-uncased
    
    • 1

    就可以运行你的代码了,但是这里运行的时候有个小问题,就是你运行时候仍然会报错说无法下载这些文件,请耐心等待,你的代码会正常运行
    在这里插入图片描述

    如果你不想出现之前上面还显示出错的问题,那么修改之前的加载方法,之前的加载方法为:

    config = BertConfig.from_pretrained(model_name) 
    
    • 1

    修改为

    # 指定本地bert模型路径
    bert_model_dir = "/path/to/bert/model" 
    
    config = transformers.BertConfig.from_pretrained(bert_model_dir)
    
    • 1
    • 2
    • 3
    • 4

    即可

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/245924
推荐阅读
相关标签
  

闽ICP备14008679号