当前位置:   article > 正文

云边端与边缘计算技术_云边端算法管理

云边端算法管理

云边端与边缘计算技术
边缘计算,是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。而云端计算,仍然可以访问边缘计算的历史数据。
边缘计算并非是一个新鲜词。作为一家内容分发网络CDN和云服务的提供商AKAMAI,早在2003年就与IBM合作“边缘计算”。作为世界上最大的分布式计算服务商之一,当时它承担了全球15-30%的网络流量。在其一份内部研究项目中即提出“边缘计算”的目的和解决问题,并通过AKAMAI与IBM在其WebSphere上提供基于边缘Edge的服务。
对物联网而言,边缘计算技术取得突破,意味着许多控制将通过本地设备实现而无需交由云端,处理过程将在本地边缘计算层完成。这无疑将大大提升处理效率,减轻云端的负荷。由于更加靠近用户,还可为用户提供更快的响应,将需求在边缘端解决。
在国外,以思科为代表的网络公司以雾计算为主。思科已经不再成为工业互联网联盟的创立成员,但却集中精力主导OpenFog开放雾联盟。
参考文献链接
https://mp.weixin.qq.com/s/aNQ6QxemKlsq8CjFDVx-cg
https://mp.weixin.qq.com/s/ulIaz9crybbXgVK0d2fWYQ
https://mp.weixin.qq.com/s/cLcUNff3bcILTJ6u4wZjlw
https://baike.baidu.com/item/%E8%BE%B9%E7%BC%98%E8%AE%A1%E7%AE%97/9044985?fr=aladdin
无论是云、雾还是边缘计算,本身只是实现物联网、智能制造等所需要计算技术的一种方法或者模式。严格讲,雾计算和边缘计算本身并没有本质的区别,都是在接近于现场应用端提供的计算。就其本质而言,都是相对于云计算而言的。
在这里插入图片描述

边缘计算的范式
从二者的计算范式可以看出来,边缘侧的数据计算,一下子变得丰富起
来。这里产生了全新的想象空间。

详解边缘计算系统逻辑架构:云、边、端协同
在这里插入图片描述

01 边缘计算系统逻辑架构简介
由图3-1可知,逻辑架构侧重边缘计算系统云、边、端各部分之间的交互和协同,包括云、边协同,边、端协同和云、边、端协同3个部分。
在这里插入图片描述

▲图3-1 边缘计算系统逻辑架构

  1. 云、边协同:通过云部分Kubernetes的控制节点和边部分KubeEdge所运行的节点共同实现。
  2. 边、端协同:通过边部分KubeEdge和端部分EdgeX Foundry共同实现。
  3. 云、边、端协同:通过云解决方案Kubernetes的控制节点、边缘解决方案KubeEdge和端解决方案EdgeX Foundry共同实现。
    02 云、边协同
    云、边协同的具体实现如图3-2所示。
    在这里插入图片描述

▲图3-2 边缘计算系统中云、边协同逻辑架构
Kubernetes控制节点沿用云部分原有的数据模型,保持原有的控制、数据流程不变,即KubeEdge所运行的节点在Kubernetes上呈现出来的是一个普通节点。Kubernetes可以像管理普通节点一样管理KubeEdge所运行的节点。
KubeEdge之所以能够运行在资源受限、网络质量不可控的边缘节点上,是因为KubeEdge在Kubernetes控制节点的基础上通过云部分的CloudCore和边缘部分的EdgeCore实现了对Kubernetes云计算编排容器化应用的下沉。
云部分的CloudCore负责监听Kubernetes控制节点的指令和事件下发到边缘部分的EdgeCore,同时将边缘部分的EdgeCore上报的状态信息和事件信息提交给Kubernetes的控制节点;边缘部分的EdgeCore负责接收云部分CloudCore的指令和事件信息,并执行相关指令和维护边缘负载,同时将边缘部分的状态信息和事件信息上报给云部分的CloudCore。
除此之外,EdgeCore是在Kubelet组件基础上裁剪、定制而成的,即将Kubelet在边缘上用不到的富功能进行裁剪,针对边缘部分资源受限、网络质量不佳的现状在Kubelet的基础上增加了离线计算功能,使EdgeCore能够很好地适应边缘环境。
03 边、端协同
边、端协同的具体实现如图3-3所示。
在这里插入图片描述

▲图3-3 边缘计算系统中边、端协同逻辑架构

  1. KubeEdge作为运行在边缘节点的管理程序,负责管理在边缘节点上应用负载的资源、运行状态和故障等。在一些的边缘计算系统中,KubeEdge为EdgeX Foundry服务提供所需的计算资源,同时负责管理EdgeX Foundry端服务的整个生命周期。
  2. EdgeX Foundry是由KubeEdge管理的一套IoT SaaS平台。该平台以微服务的形式管理多种物联网终端设备。同时,EdgeX Foundry可以通过所管理的微服务采集、过滤、存储和挖掘多种物联网终端设备的数据,也可以通过所管理的微服务向多种物联网终端设备下发指令来对终端设备进行控制。
    由图3-4可知,KubeEdge的解决方案由MQTT代理和对接支持各种协议设备的服务组成。
    在这里插入图片描述

▲图3-4 KubeEdge端解决方案逻辑架构

  1. MQTT代理:作为各种物联网终端设备和KubeEdge节点之间的一个通信管道,负责接收终端设备发送的数据,并将接收到的数据发送到已经订阅MQTT代理的KubeEdge节点上。
  2. 对接支持各种协议设备的服务:负责与支持相应协议的设备进行交互,能够采集设备的数据并发送给MQTT代理,能够从MQTT代理接收相关指令并下发到设备。
    通过上述分析可知,KubeEdge的端解决方案还比较初级。
  3. KubeEdge的端解决方案支持的负载类型还比较单一,目前只能通过MQTT代理支持一些物联网终端设备,对视频处理和使用AI模型进行推理的应用负载还不支持。
  4. 对接支持各种协议设备的服务目前还比较少,只支持使用Bluetooth和Modbus两种协议的设备。
    基于上述原因,边缘计算系统的端解决方案没有使用KubeEdge的端解决方案,而是使用EdgeX Foundry这款功能相对完善的IoT SaaS平台。
    04 云、边、端协同
    边缘计算系统中云、边、端协同的理想效果如图3-5所示。
    在这里插入图片描述

▲图3-5 边缘系统中云、边、端协同的理想效果

由图3-5可知,云、边、端协同包括两层,即云、边协同和云、边、端协同。

  1. 云、边协同:云作为控制平面,边作为计算平台。
  2. 云、边、端协同:
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/250555?site
推荐阅读
相关标签
  

闽ICP备14008679号