赞
踩
今天面试遇到同学说做过内存优化,于是我一般都会问那 Bitmap 的像素内存存在哪?大多数同学都回答在 java heap 里面,就比较尴尬,理论上你做内存优化,如果连图片这个内存大户内存存在哪都不清楚,实在不太能说得过去。
Bitmap可以说是安卓里面最常见的内存消耗大户了,我们开发过程中遇到的oom问题很多都是由它引发的。谷歌官方也一直在迭代它的像素内存管理策略。从 Android 2.3.3以前的分配在native上,到2.3-7.1之间的分配在java堆上,又到8.0之后的回到native上。几度变迁,它的回收方法也在跟着变化。
2.3.3以前Bitmap的像素内存是分配在natvie上,而且不确定什么时候会被回收。根据官方文档的说法我们需要手动调用Bitmap.recycle()去回收:
https://developer.android.com/topic/performance/graphics/manage-memory
在 Android 2.3.3(API 级别 10)及更低版本上,位图的后备像素数据存储在本地内存中。它与存储在 Dalvik 堆中的位图本身是分开的。本地内存中的像素数据并不以可预测的方式释放,可能会导致应用短暂超出其内存限制并崩溃。
在 Android 2.3.3(API 级别 10)及更低版本上,建议使用 recycle()。如果您在应用中显示大量位图数据,则可能会遇到 OutOfMemoryError 错误。利用 recycle() 方法,应用可以尽快回收内存。
注意:只有当您确定位图已不再使用时才应该使用 recycle()。如果您调用 recycle() 并在稍后尝试绘制位图,则会收到错误:"Canvas: trying to use a recycled bitmap"。
虽然3.0~7.1的版本Bitmp的像素内存是分配在java堆上的,但是实际是在natvie层进行decode的,而且会在native层创建一个c++的对象和java层的Bitmap对象进行关联。
从BitmapFactory的源码我们可以看到它一路调用到nativeDecodeStream这个native方法:
- // BitmapFactory.java
- public static Bitmap decodeFile(String pathName, Options opts) {
- ...
- stream = new FileInputStream(pathName);
- bm = decodeStream(stream, null, opts);
- ...
- return bm;
- }
-
- public static Bitmap decodeStream(InputStream is, Rect outPadding, Options opts) {
- ...
- bm = decodeStreamInternal(is, outPadding, opts);
- ...
- return bm;
- }
-
- private static Bitmap decodeStreamInternal(InputStream is, Rect outPadding, Options opts) {
- ...
- return nativeDecodeStream(is, tempStorage, outPadding, opts);
- }
nativeDecodeStream实际上会通过jni创建java堆的内存,然后读取io流解码图片将像素数据存到这个java堆内存里面:
- // BitmapFactory.cpp
- static jobject nativeDecodeStream(JNIEnv* env, jobject clazz, jobject is, jbyteArray storage,
- jobject padding, jobject options) {
- ...
- bitmap = doDecode(env, bufferedStream, padding, options);
- ...
- return bitmap;
- }
-
- static jobject doDecode(JNIEnv* env, SkStreamRewindable* stream, jobject padding, jobject options) {
- ...
- // outputAllocator是像素内存的分配器,会在java堆上创建内存给像素数据,可以通过BitmapFactory.Options.inBitmap复用前一个bitmap像素内存
- SkBitmap::Allocator* outputAllocator = (javaBitmap != NULL) ?
- (SkBitmap::Allocator*)&recyclingAllocator : (SkBitmap::Allocator*)&javaAllocator;
- ...
- // 将内存分配器设置给解码器
- decoder->setAllocator(outputAllocator);
- ...
- //解码
- if (decoder->decode(stream, &decodingBitmap, prefColorType, decodeMode)
- != SkImageDecoder::kSuccess) {
- return nullObjectReturn("decoder->decode returned false");
- }
- ...
- return GraphicsJNI::createBitmap(env, javaAllocator.getStorageObjAndReset(),
- bitmapCreateFlags, ninePatchChunk, ninePatchInsets, -1);
- }
-
- // Graphics.cpp
- jobject GraphicsJNI::createBitmap(JNIEnv* env, android::Bitmap* bitmap,
- int bitmapCreateFlags, jbyteArray ninePatchChunk, jobject ninePatchInsets,
- int density) {
-
- // java层的Bitmap对象实际上是natvie层new出来的
- // native层也会创建一个android::Bitmap对象与java层的Bitmap对象绑定
- // bitmap->javaByteArray()代码bitmap的像素数据其实是存在java层的byte数组中
- jobject obj = env->NewObject(gBitmap_class, gBitmap_constructorMethodID,
- reinterpret_cast<jlong>(bitmap), bitmap->javaByteArray(),
- bitmap->width(), bitmap->height(), density, isMutable, isPremultiplied,
- ninePatchChunk, ninePatchInsets);
- ...
- return obj;
- }
我们可以看最后会调用javaAllocator.getStorageObjAndReset()创建一个android::Bitmap类型的native层Bitmap对象,然后通过jni调用java层的Bitmap构造函数去创建java层的Bitmap对象,同时将native层的Bitmap对象保存到mNativePtr:
- // Bitmap.java
- // Convenience for JNI access
- private final long mNativePtr;
-
- /**
- * Private constructor that must received an already allocated native bitmap
- * int (pointer).
- */
- // called from JNI
- Bitmap(long nativeBitmap, byte[] buffer, int width, int height, int density,
- boolean isMutable, boolean requestPremultiplied,
- byte[] ninePatchChunk, NinePatch.InsetStruct ninePatchInsets) {
- ...
- mNativePtr = nativeBitmap;
- ...
- }
从上面的源码我们也能看出来,Bitmap的像素是存在java堆的,所以如果bitmap没有人使用了,垃圾回收器就能自动回收这块的内存,但是在native创建出来的nativeBitmap要怎么回收呢?从Bitmap的源码我们可以看到在Bitmap构造函数里面还会创建一个BitmapFinalizer去管理nativeBitmap:
- /**
- * Private constructor that must received an already allocated native bitmap
- * int (pointer).
- */
- // called from JNI
- Bitmap(long nativeBitmap, byte[] buffer, int width, int height, int density,
- boolean isMutable, boolean requestPremultiplied,
- byte[] ninePatchChunk, NinePatch.InsetStruct ninePatchInsets) {
- ...
- mNativePtr = nativeBitmap;
- mFinalizer = new BitmapFinalizer(nativeBitmap);
- ...
- }
BitmapFinalizer的原理十分简单。Bitmap对象被销毁的时候BitmapFinalizer也会同步被销毁,然后就可以在BitmapFinalizer.finalize()里面销毁native层的nativeBitmap:
- private static class BitmapFinalizer {
- private long mNativeBitmap;
- ...
- BitmapFinalizer(long nativeBitmap) {
- mNativeBitmap = nativeBitmap;
- }
- ...
- @Override
- public void finalize() {
- try {
- super.finalize();
- } catch (Throwable t) {
- // Ignore
- } finally {
- setNativeAllocationByteCount(0);
- nativeDestructor(mNativeBitmap);
- mNativeBitmap = 0;
- }
- }
- }
8.0以后像素内存又被放回了native上,所以依然需要在java层的Bitmap对象回收之后同步回收native的内存。
虽然BitmapFinalizer同样可以实现,但是Java的finalize方法实际上是不推荐使用的,所以谷歌也换了NativeAllocationRegistry去实现:
- /**
- * Private constructor that must received an already allocated native bitmap
- * int (pointer).
- */
- // called from JNI
- Bitmap(long nativeBitmap, int width, int height, int density,
- boolean isMutable, boolean requestPremultiplied,
- ...
- mNativePtr = nativeBitmap;
- long nativeSize = NATIVE_ALLOCATION_SIZE + getAllocationByteCount();
- NativeAllocationRegistry registry = new NativeAllocationRegistry(
- Bitmap.class.getClassLoader(), nativeGetNativeFinalizer(), nativeSize);
- registry.registerNativeAllocation(this, nativeBitmap);
- }
NativeAllocationRegistry底层实际上使用了sun.misc.Cleaner,可以为对象注册一个清理的Runnable。当对象内存被回收的时候jvm就会调用它。
- import sun.misc.Cleaner;
-
- public Runnable registerNativeAllocation(Object referent, Allocator allocator) {
- ...
- CleanerThunk thunk = new CleanerThunk();
- Cleaner cleaner = Cleaner.create(referent, thunk);
- ..
- }
-
- private class CleanerThunk implements Runnable {
- ...
- public void run() {
- if (nativePtr != 0) {
- applyFreeFunction(freeFunction, nativePtr);
- }
- registerNativeFree(size);
- }
- ...
- }
这个Cleaner的原理也很暴力,首先它是一个虚引用,registerNativeAllocation实际上创建了一个Bitmap的虚引用:
- // Cleaner.java
- public class Cleaner extends PhantomReference {
- ...
- public static Cleaner create(Object ob, Runnable thunk) {
- ...
- return add(new Cleaner(ob, thunk));
- }
- ...
- private Cleaner(Object referent, Runnable thunk) {
- super(referent, dummyQueue);
- this.thunk = thunk;
- }
- ...
- public void clean() {
- ...
- thunk.run();
- ...
- }
- ...
- }
虚引用的话我们都知道需要配合一个ReferenceQueue使用,当对象的引用被回收的时候,jvm就会将这个虚引用丢到ReferenceQueue里面。而ReferenceQueue在插入的时候居然通过instanceof判断了下是不是Cleaner:
- // ReferenceQueue.java
- private boolean enqueueLocked(Reference<? extends T> r) {
- ...
- if (r instanceof Cleaner) {
- Cleaner cl = (sun.misc.Cleaner) r;
- cl.clean();
- ...
- }
- ...
- }
也就是说Bitmap对象被回收,就会触发Cleaner这个虚引用被丢入ReferenceQueue,而ReferenceQueue里面会判断丢进来的虚引用是不是Cleaner,如果是就调用Cleaner.clean()方法。而clean方法内部就会再去执行我们注册的清理的Runnable。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。