赞
踩
神经网络的典型处理如下所示:
下面是利用PyTorch定义深度网络层(Op)示例:
- class FeatureL2Norm(torch.nn.Module):
- def __init__(self):
- super(FeatureL2Norm, self).__init__()
-
- def forward(self, feature):
- epsilon = 1e-6
- # print(feature.size())
- # print(torch.pow(torch.sum(torch.pow(feature,2),1)+epsilon,0.5).size())
- norm = torch.pow(torch.sum(torch.pow(feature,2),1)+epsilon,0.5).unsqueeze(1).expand_as(feature)
- return torch.div(feature,norm)
- class FeatureRegression(nn.Module):
- def __init__(self, output_dim=6, use_cuda=True):
- super(FeatureRegression, self).__init__()
- self.conv = nn.Sequential(
- nn.Conv2d(225, 128, kernel_size=7, padding=0),
- nn.BatchNorm2d(128),
- nn.ReLU(inplace=True),
- nn.Conv2d(128, 64, kernel_size=5, padding=0),
- nn.BatchNorm2d(64),
- nn.ReLU(inplace=True),
- )
- self.linear = nn.Linear(64 * 5 * 5, output_dim)
- if use_cuda:
- self.conv.cuda()
- self.linear.cuda()
-
- def forward(self, x):
- x = self.conv(x)
- x = x.view(x.size(0), -1)
- x = self.linear(x)
- return x
由上例代码可以看到,不论是在定义网络结构还是定义网络层的操作(Op),均需要定义forward函数,下面看一下PyTorch官网对PyTorch的forward方法的描述:
那么调用forward方法的具体流程是什么样的呢?具体流程是这样的:
上述中“调用module的call方法”是指nn.Module 的__call__方法。定义__call__方法的类可以当作函数调用,具体参考Python的面向对象编程。也就是说,当把定义的网络模型model当作函数调用的时候就自动调用定义的网络模型的forward方法。nn.Module 的__call__方法部分源码如下所示:
- def __call__(self, *input, **kwargs):
- result = self.forward(*input, **kwargs)
- for hook in self._forward_hooks.values():
- #将注册的hook拿出来用
- hook_result = hook(self, input, result)
- ...
- return result
可以看到,当执行model(x)的时候,底层自动调用forward方法计算结果。具体示例如下:
- class LeNet(nn.Module):
- def __init__(self):
- super(LeNet, self).__init__()
-
- layer1 = nn.Sequential()
- layer1.add_module('conv1', nn.Conv(1, 6, 3, padding=1))
- layer1.add_moudle('pool1', nn.MaxPool2d(2, 2))
- self.layer1 = layer1
-
- layer2 = nn.Sequential()
- layer2.add_module('conv2', nn.Conv(6, 16, 5))
- layer2.add_moudle('pool2', nn.MaxPool2d(2, 2))
- self.layer2 = layer2
-
- layer3 = nn.Sequential()
- layer3.add_module('fc1', nn.Linear(400, 120))
- layer3.add_moudle('fc2', nn.Linear(120, 84))
- layer3.add_moudle('fc3', nn.Linear(84, 10))
- self.layer3 = layer3
- def forward(self, x):
- x = self.layer1(x)
- x = self.layer2(x)
- x = x.view(x.size(0), -1)
- x = self.layer3(x)
- return x
如上则调用网络模型定义的forward方法。
如果您觉得我的文章对您有所帮助,欢迎扫码进行赞赏!
参考:
2. pytorch学习笔记(七):pytorch hook 和 关于pytorch backward过程的理解
3. Pytorch入门学习(三):Neural Networks
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。