赞
踩
这篇文章是用来讲解Resnet(残差网络)代码的,结合代码理解残差网络结构。
目录
可以直接调用torch内置的resnet官方代码。
- from torchvision.models import resnet50
- model = resnet50()
- print("model:", model)
不论是调用resnet50还是resnet101,这些模型都是调用的Resnet模型。因此我们仅需要看这个类就可以。
在ResNet这个类中又由Bottleneck(瓶颈层)、3×3卷积层、1×1卷积层、BasicBlock组成。接下来将逐步解释。
拼劲层这个类在resnet50及之后的系列用这个,resnet18、resnet34用BasicBlock
参数说明:
expansion=4:Bottleneck的输出通道数是输入通道数的4背
inplanes:输入通道数
planes:输出通道数
stride:步长
downsample:下采样
groups:分组卷积
base_width:卷积块宽度
dilation:空洞卷积
nor_layer:是否传入norm_layer
- class Bottleneck(nn.Module):
- # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
- # while original implementation places the stride at the first 1x1 convolution(self.conv1)
- # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
- # This variant is also known as ResNet V1.5 and improves accuracy according to
- # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
-
- expansion = 4
- def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
- base_width=64, dilation=1, norm_layer=None):
- super(Bottleneck, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- width = int(planes * (base_width / 64.)) * groups
- # Both self.conv2 and self.downsample layers downsample the input when stride != 1
- self.conv1 = conv1x1(inplanes, width)
- self.bn1 = norm_layer(width)
- self.conv2 = conv3x3(width, width, stride, groups, dilation)
- self.bn2 = norm_layer(width)
- self.conv3 = conv1x1(width, planes * self.expansion)
- self.bn3 = norm_layer(planes * self.expansion)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- identity = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- # 表示如果输入和输出通道数不等,那就通过1x1卷积进行升维后的相加操作,否则可以可以直接相加
- if self.downsample is not None:
- identity = self.downsample(x)
-
- out += identity
- out = self.relu(out)
- '''
- if downsample:
- x -->conv_1x1-->bn-->relu-->conv_3x3-->bn-->relu-->conv_1x1-->bn--add-->relu-->out
- |___________downsample____________________________________________|
- else:
- x -->conv_1x1-->bn-->relu-->conv_3x3-->bn-->relu-->conv_1x1-->bn--add-->relu-->out
- |__________________________________________________________________|
- '''
-
- return out
下面这张图是一个Bottleneck结构图,残差边为一个1x1的卷积。
传入参数:
in_planes:输入通道
out_planes:输出通道
stride:步长
groups:卷积分组数
dilation:可以控制空洞卷积
可以看到这个conv3×3中的kernel_size为3,bias为False,padding的大小和dilation一样。
- def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
- """3x3 convolution with padding"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
- padding=dilation, groups=groups, bias=False, dilation=dilation)
in_planes:输入通道数
out_planes:输出通道数
可以看到kernel_size为1,bias为False
- def conv1x1(in_planes, out_planes, stride=1):
- """1x1 convolution"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
这个BasicBlock当在resnet18、resnet34用这个
传入参数:
inplanes:输入通道数
planes:输出通道数
stride:步长
downsample:下采样
groups:分组数
base_width:宽度
当norm_layer为None的时候,则norm_layer为BN层。当采用groups(分组卷积)或者base_width不为64的时候抛出错误:
'BasicBlock only supports groups=1 and base_width=64'该错误表示在BasicBlock仅支持groups=1和base_width=64
当dilation>1的时候,表示在BasicBlock采用了空洞卷积,抛出错误。
- class BasicBlock(nn.Module):
- expansion = 1
-
- def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
- base_width=64, dilation=1, norm_layer=None):
- super(BasicBlock, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- if groups != 1 or base_width != 64:
- raise ValueError('BasicBlock only supports groups=1 and base_width=64')
- if dilation > 1:
- raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
- # Both self.conv1 and self.downsample layers downsample the input when stride != 1
- self.conv1 = conv3x3(inplanes, planes, stride)
- self.bn1 = norm_layer(planes)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = conv3x3(planes, planes)
- self.bn2 = norm_layer(planes)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- identity = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
-
- if self.downsample is not None:
- identity = self.downsample(x)
-
- out += identity
- out = self.relu(out)
- """
- if norm_layer is None
- if downsample is not None:
- x -->conv_3x3-->bn-->relu-->conv_3x3-->bn--add--relu-->out
- |____________downsample_____________________|
- if downsample is None:
- x -->conv_3×3-->bn-->relu-->conv_3×3-->bn--add--relu-->out
- |___________________________________________|
- """
- return out
可以看到在BasicBlock(基础块)中当需要进行下采样的时候,残差边需要一次下采样。
在正式讲Resnet之前需要讲一下_make_layer函数,因为网络结构中的残差层都是由这个函数决定的。
参数说明:
block:传入BasicBlock还是Bottleneck
planes:输出通道数
blocks:传入的layer
stride:步长,默认为1
dilate:是否采用空洞卷积,默认为False
这里以不采用空洞卷积,也就是dilate=False,block取Bottlenenck为例。
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- conv1x1(self.inplanes, planes * block.expansion, stride),
- norm_layer(planes * block.expansion),
- )
上面这段代码表示什么时候采用下采样的情况,当stride不为1,或者通道数inplanes(初始默认取值64) ≠ planes * block.expansion(此时block.expansion=4)。输入和输出通道不相等时候,下采样结构定义为:
downsample:
(conv1×1:conv2d(inplanes,4*planes,stride),
norm_layer:BN)
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
- self.base_width, previous_dilation, norm_layer))
- self.inplanes = planes * block.expansion
上面这段代码表示,创建一个空的列表layers, 此时的block为Bottleneck,将获得的Bottlenck放入layers列表中。放入以后下一层的inplanes输入通道数为变成上一层输出通道数planes的4倍【也就是为下一个block做准备】。
- for _ in range(1, blocks):
- layers.append(block(self.inplanes, planes, groups=self.groups,
- base_width=self.base_width, dilation=self.dilation,
- norm_layer=norm_layer))
而上面这一段代码就是表示当前的Bottleneck会重复几次(不过需要注意的是,在每个layer中只在第一个bottleneck用了1x1的残差边)。
- def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
- norm_layer = self._norm_layer
- downsample = None
- previous_dilation = self.dilation
- if dilate:
- self.dilation *= stride
- stride = 1
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- conv1x1(self.inplanes, planes * block.expansion, stride),
- norm_layer(planes * block.expansion),
- )
-
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
- self.base_width, previous_dilation, norm_layer))
- self.inplanes = planes * block.expansion
- for _ in range(1, blocks):
- layers.append(block(self.inplanes, planes, groups=self.groups,
- base_width=self.base_width, dilation=self.dilation,
- norm_layer=norm_layer))
-
- return nn.Sequential(*layers)
接下来是一步一步看ResNet中的代码。
参数说明:
block:表示传入BasicBlock或者Bottleneck层。
layers:传入的是个列表,可以通过获取layers[index]来控制stride,以及是否采用空洞卷积。
num_classes:分类数量
zero_init_residual:初始化
groups:分组数
replace_stride_with_dilation:表示是否传入空洞卷积参数。如果不指定,则赋值为 [False, False, False],表示不使用空洞卷积。
norm_layer:是否传入norm_layer层,不传入的时候则为BN层。
- def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
- groups=1, width_per_group=64, replace_stride_with_dilation=None,
- norm_layer=None):
代码讲解将以Resnet50为例,那么此时传入的block就为Bottleneck,layer=[3,4,6,3],num_classes=1000,其他Resnet系列可以看下面这张图。在看代码的时候希望大家可以对着下面这个图来看,方便理解。
先看下下面这几行代码,可以看到这三行代码是由一个输入通道为3,输出通道为64,k=7,s=2,paddind=3,bn层,relu函数构成的,这正好就对应到上面图中的conv1。
- # conv1结构代码
- self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
- bias=False)
- self.bn1 = norm_layer(self.inplanes)
- self.relu = nn.ReLU(inplace=True)
然后再看conv2_x。conv2_x是由一个最大池化,还有3个Bottleneck组成(你可以理解为图中的3,4,6,3就是这类结构重复次数)。
- # conv2_x
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = self._make_layer(block, 64, layers[0])
代码中的layer1调用的是_make_layer函数,
下面这张图为layer1,表示为第一个bottleneck结构。在Resnet的每个Bottlenck中,只在第一个Bottlenck处的残差边会用1x1的卷积进行升维,其他的都是输入和输出直接相加,这个特点需要注意一下。
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
- dilate=replace_stride_with_dilation[0]) #
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
- dilate=replace_stride_with_dilation[1])
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
- dilate=replace_stride_with_dilation[2])
然后看layer2,3,4,过程和layer1是一样的,只不过这里传入的stride=2.
- self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
- self.fc = nn.Linear(512 * block.expansion, num_classes)
最后就是连接一个平均池化和全连接用来分类。
- class ResNet(nn.Module):
-
- def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
- groups=1, width_per_group=64, replace_stride_with_dilation=None,
- norm_layer=None):
- super(ResNet, self).__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- self._norm_layer = norm_layer
-
- self.inplanes = 64
- self.dilation = 1
- if replace_stride_with_dilation is None:
- # each element in the tuple indicates if we should replace
- # the 2x2 stride with a dilated convolution instead
- replace_stride_with_dilation = [False, False, False]
- if len(replace_stride_with_dilation) != 3:
- raise ValueError("replace_stride_with_dilation should be None "
- "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
- self.groups = groups
- self.base_width = width_per_group
- self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
- bias=False)
- self.bn1 = norm_layer(self.inplanes)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = self._make_layer(block, 64, layers[0])
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
- dilate=replace_stride_with_dilation[0])
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
- dilate=replace_stride_with_dilation[1])
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
- dilate=replace_stride_with_dilation[2])
- self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
- self.fc = nn.Linear(512 * block.expansion, num_classes)
-
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
- elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
-
- # Zero-initialize the last BN in each residual branch,
- # so that the residual branch starts with zeros, and each residual block behaves like an identity.
- # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
- if zero_init_residual:
- for m in self.modules():
- if isinstance(m, Bottleneck):
- nn.init.constant_(m.bn3.weight, 0)
- elif isinstance(m, BasicBlock):
- nn.init.constant_(m.bn2.weight, 0)
-
- def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
- norm_layer = self._norm_layer
- downsample = None
- previous_dilation = self.dilation
- if dilate:
- self.dilation *= stride
- stride = 1
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- conv1x1(self.inplanes, planes * block.expansion, stride),
- norm_layer(planes * block.expansion),
- )
-
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
- self.base_width, previous_dilation, norm_layer))
- self.inplanes = planes * block.expansion
- for _ in range(1, blocks):
- layers.append(block(self.inplanes, planes, groups=self.groups,
- base_width=self.base_width, dilation=self.dilation,
- norm_layer=norm_layer))
-
- return nn.Sequential(*layers)
-
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
-
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
-
- x = self.avgpool(x)
- x = torch.flatten(x, 1)
- x = self.fc(x)
-
- return x
所以可以进行一个总结:
_make_layer函数用来制作残差块的结构,参数layer可以用来控制每个残差层是由多少个残差块组成的,在残差块结构中判断是否采用downsample(1x1卷积进行升维)是根据步长或者输入输出通道数是否相等,如果步长为1,输入通道数不等于输出通道数就会采用一个1x1卷积进行升维。每个残差层layer只有第一个残差块是采用了downsample。
后续将结合这一部分做知识蒸馏的讲解,请持续关注
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。