当前位置:   article > 正文

基于SLAM的机器人导航避障方案_slam 避障算法

slam 避障算法

基于SLAM的机器人导航避障方案

在实现机器人智能导航中,SLAM发挥了重要作用,可帮助机器人实现地图构建与即时定位,但仅有SLAM是还不够的,还需要加入路径规划和运动控制。在SLAM技术帮助机器人确定自身定位和构建地图之后,进行一个叫做目标点导航的能力。通俗的说,就是规划一条从A点到B点的路径出来,然后让机器人移动过去。

运动规划是一个很大的概念,从机械臂的运动、飞行器的飞行,到扫地机的清扫,机器人的移动,其实这些都是属于运动规划的范畴。

SLAM+路径规划和运动控制=机器人智能导航

运动规划有全局路径规划和局部路径规划之分,全局路径规划是最上层的运动规划逻辑,它按照机器人预先记录的环境地图并结合机器人当前位姿以及任务目标点的位置,在地图上找到前往目标点最快捷的路径。

局部路径规划是指当环境出现变化或者上层规划的路径不利于机器人实际行走的时候(比如机器人在行走的过程中遇到障碍物),局部路径规划将做出微调。

与全局路径规划有所区别的是,局部路径规划可能并不知道机器人最终要去哪,但是对于机器人怎么绕开眼前的障碍物特别在行。

这两个层次的规划模块协同工作,机器人就可以很好的实现从A点到B点的智能移动了。不过实际工作环境下,上述配置还不够。因为运动规划的过程中还包含静态地图和动态地图两种情况。

A* 算法

A*(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法,也是解决许多搜索问题的有效算法。算法中的距离估算值与实际值越接近,最终搜索速度越快。但是,A*算法同样也可用于动态路径规划当中,只是当环境发生变化时,需要重新规划路线。基于SLAM的机器人导航避障方案

D* 算法

D*算法则是一种动态启发式路径搜索算法,它事先对环境位置,让机器人在陌生环境中行动自如,在瞬息万变的环境中游刃有余。D*算法的最大优点是不需要预先探明地图,机器人可以和人一样,即使在未知环境中,也可以展开行动,随着机器人不断探索,路径也会时刻调整。

基于SLAM的机器人导航避障方案上述的几种算法都是目前绝大部分机器人所需要的路径规划算法,能够让机器人跟人一样智能,快速规划A到B点的最短路径,并在遇到障碍物的时候知道如何处理。对于一些复杂商用场景的服务机器人来说,它的路径规划算法也更为复杂,如何实现复杂商用场景的自主导航成为业内难题。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/390348
推荐阅读
相关标签
  

闽ICP备14008679号