当前位置:   article > 正文

TF-IDF 提取关键词_tf-idf关键词提取

tf-idf关键词提取

<?php

class Document
{
    protected $words;
    protected $tf_matrix;
    protected $tfidf_matrix;
    public function __construct($string)
    {
        $this->tfidf_matrix = null;
        if (isset($string))
        {
            $string = strtolower($string);
            $this->words = preg_split('/((^p{P}+)|(p{P}*s+p{P}*)|(p{P}+$))/', $string, -1, PREG_SPLIT_NO_EMPTY);
            $this->build_tf();
        }
        else
        {
            $this->words = null;
            $this->tf_matrix = null;
        }
    }
    public function build_tf()
    {
        if (isset($this->tf_matrix) && $this->tf_matrix)
            return ;
        $this->tfidf_matrix = null;
        $words_count = count($this->words);
        $words_occ = array_count_values($this->words);
        foreach ($words_occ as $word => $amount)
            $this->tf_matrix[$word] = $amount / $words_count;
        arsort($this->tf_matrix);
    }
    public function build_tfidf($idf)
    {
        if (isset($this->tfidf_matrix) && $this->tfidf_matrix)
            return true;
        if (!isset($this->tf_matrix) || !$this->tf_matrix)
            return false;
        if (!isset($idf) || !$idf)
            return false;
    
        if(is_array($idf)){
            foreach ($this->tf_matrix as $word => $word_tf){
                $this->tfidf_matrix[$word] = $word_tf * $idf[$word];
            }

        }else{
            foreach ($this->tf_matrix as $word => $word_tf){
                $this->tfidf_matrix[$word] = $word_tf * $idf;
            }
        }
        arsort($this->tfidf_matrix);
        return true;
    }
    public function getWords()
    {
        return ($this->words);
    }
    public function getTf()
    {
        return ($this->tf_matrix);
    }
    public function getTfidf()
    {
        return ($this->tfidf_matrix);
    }
}

/*
第一步,计算词频。
考虑到文章有长短之分,为了便于不同文章的比较,进行"词频"标准化。

第二步,计算逆文档频率。
这时,需要一个语料库(corpus),用来模拟语言的使用环境。
如果一个词越常见,那么分母就越大,逆文档频率就越小越接近0。分母之所以要加1,是为了避免分母为0(即所有文档都不包含该词)。log表示对得到的值取对数。

第三步,计算TF-IDF。
可以看到,TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。所以,自动提取关键词的算法就很清楚了,就是计算出文档的每个词的TF-IDF值,然后按降序排列,取排在最前面的几个词。
*/
$text = 'i very good, ha , i very nice, i is good';


$obj = new Document($text);
$obj->build_tf();   //词频率TF,一般是词出现次数/总词数

$idf = log(3 / 2);   //逆文档频率,总文档数/包含该词的文档数
$obj->build_tfidf($idf);  

//越高则频率高
var_dump($obj->getWords(), 88, $obj->getTf(), 99, $obj->getTfidf());

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/403183
推荐阅读
相关标签
  

闽ICP备14008679号