赞
踩
今天,我要为大家带来的是真实的Minecraft!这次大家可以不用失望了,真的是了!
---------------------------------------------------开始写代码了!---------------------------------------------------------
首先我要提醒大家的是先pip一下:
打开cmd,输入以下代码:
pip install pyglet
因程序太长了,所以我不会细分讲解。
一、提前准备和变量定义
先导入模块
定义好任务的变量,如重力,跳跃距离等。
- from __future__ import division
-
- import sys
- import math
- import random
- import time
-
- from collections import deque
- from pyglet import image
- from pyglet.gl import *
- from pyglet.graphics import TextureGroup
- from pyglet.window import key, mouse
-
- TICKS_PER_SEC = 60
-
- SECTOR_SIZE = 16
-
- GAMETYPES = False # 是否开启冰雪世界
-
- SEED = random.randint(10, 1000000)#656795(种子"akioi") # 世界种子
-
- GTIME = 0 # 当前世界时间
- GDAY = 0.0005
- GNIGHT = 0.0015
-
- PLAYER_HEIGHT = 2 # 玩家高度
-
- WALKING_SPEED = PLAYER_HEIGHT + 2# 走路速度
- RUNNING_SPEED = PLAYER_HEIGHT * 2 # 跑步速度
- FLYING_SPEED = 15 # 飞行速度
-
- # 35.0
- GRAVITY = 35.0 # 重力
- MAX_JUMP_HEIGHT = PLAYER_HEIGHT - 0.75 # 最大跳跃速度
- JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT)
- TERMINAL_VELOCITY = 35 # 终端速度
-
- WORLDLEN = 128 # 世界长度
-
- TEXTURE_PATH = 'texture2_1.png' # 纹理文件
最后我会奉上图片的
二、主要函数、地图生成和人物设定
为了让大家看得清楚,我这里就不讲解了,直接让大家看代码:
- def cube_vertices(x, y, z, n):
- # 返回立方体的顶点,大小为2n。
- return [
- x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n, # top
- x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n, # bottom
- x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n, # left
- x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n, # right
- x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n, # front
- x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n, # back
- ]
-
- def tex_coord(x, y, n=8):
- # 返回纹理的边界顶点。
- m = 1.0 / n
- dx = x * m
- dy = y * m
- return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m
-
-
- def tex_coords(top, bottom, side):
- # 返回顶部、底部和侧面的纹理列表。
- top = tex_coord(*top)
- bottom = tex_coord(*bottom)
- side = tex_coord(*side)
- result = []
- result.extend(top)
- result.extend(bottom)
- result.extend(side * 4)
- return result
-
- if GAMETYPES:
- GRASS = tex_coords((4, 0), (0, 1), (1, 3))
- else:
- GRASS = tex_coords((1, 0), (0, 1), (0, 0))
- SAND = tex_coords((1, 1), (1, 1), (1, 1))
- DIRT = tex_coords((0, 1), (0, 1), (0, 1))
- STONE = tex_coords((2, 0), (2, 0), (2, 0))
- ENDSTONE = tex_coords((2, 1), (2, 1), (2, 1))
- if GAMETYPES:
- WATER = tex_coords((3, 1), (3, 1), (3, 1))
- else:
- WATER = tex_coords((0, 4), (0, 4), (0, 4))
- WOOD = tex_coords((0, 2), (0, 2), (3, 0))
- LEAF = tex_coords((0, 3), (0, 3), (0, 3))
- BRICK = tex_coords((1, 2), (1, 2), (1, 2))
- PUMKEY = tex_coords((2, 2), (3, 3), (2, 3))
- MELON = tex_coords((2, 4), (2, 4), (1, 4))
- CLOUD = tex_coords((3, 2), (3, 2), (3, 2))
- TNT = tex_coords((4, 2), (4, 3), (4, 1))
-
- # 立方体的6个面
- FACES = [
- ( 0, 1, 0),
- ( 0,-1, 0),
- (-1, 0, 0),
- ( 1, 0, 0),
- ( 0, 0, 1),
- ( 0, 0,-1),
- ]
-
- random.seed(SEED)
-
-
- def normalize(position):
- # 将三维坐标'position'的x、y、z取近似值
- x, y, z = position
- x, y, z = (round(x), round(y), round(z))
- return (x, y, z)
-
-
- def sectorize(position):
- x, y, z = normalize(position)
- x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE
- return (x, 0, z)
-
-
- persistence = random.uniform(0.01,0.15)
- Number_Of_Octaves = random.randint(3,5)
-
- def Noise(x, y):
- n = x + y * 57
- n = (n * 8192) ^ n
- return ( 1.0 - ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0)
-
- def SmoothedNoise(x, y):
- corners = ( Noise(x-1, y-1)+Noise(x+1, y-1)+Noise(x-1, y+1)+Noise(x+1, y+1) ) / 16
- sides = ( Noise(x-1, y) +Noise(x+1, y) +Noise(x, y-1) +Noise(x, y+1) ) / 8
- center = Noise(x, y) / 4
- return corners + sides + center
-
- def Cosine_Interpolate(a, b, x):
- ft = x * 3.1415927
- f = (1 - math.cos(ft)) * 0.5
- return a*(1-f) + b*f
-
- def Linear_Interpolate(a, b, x):
- return a*(1-x) + b*x
-
- def InterpolatedNoise(x, y):
- integer_X = int(x)
- fractional_X = x - integer_X
- integer_Y = int(y)
- fractional_Y = y - integer_Y
- v1 = SmoothedNoise(integer_X, integer_Y)
- v2 = SmoothedNoise(integer_X + 1, integer_Y)
- v3 = SmoothedNoise(integer_X, integer_Y + 1)
- v4 = SmoothedNoise(integer_X + 1, integer_Y + 1)
- i1 = Cosine_Interpolate(v1, v2, fractional_X)
- i2 = Cosine_Interpolate(v3, v4, fractional_X)
- return Cosine_Interpolate(i1, i2, fractional_Y)
-
- def PerlinNoise(x, y):
- noise = 0
- p = persistence
- n = Number_Of_Octaves
- for i in range(n):
- frequency = pow(2,i)
- amplitude = pow(p,i)
- noise = noise + InterpolatedNoise(x * frequency, y * frequency) * amplitude
- return noise
-
-
- class Model(object):
-
- def __init__(self):
-
- self.batch = pyglet.graphics.Batch()
- self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture()) # 纹理列表
- self.world = {} # 地图
- self.shown = {} # 显示的方块
- self._shown = {} # 显示的纹理
- self.sectors = {}
- self.queue = deque()
- self.dfy = self._initialize()
-
- def tree(self, y, x, z):
- # 生成树
- th = random.randint(4, 6)
- ts = random.randint(th // 2, 4)
- for i in range(y, y + th):
- self.add_block((x, i, z), WOOD, immediate=False)
- for dy in range(y + th, y + th + 2):
- for dx in range(x - ts, x + ts + 1):
- for dz in range(z - ts, z + ts + 1):
- self.add_block((dx, dy, dz), LEAF, immediate=False)
- for dy in range(y + th + 2, y + th + ts + 2):
- ts -= 1
- for dx in range(x - ts, x + ts + 1):
- for dz in range(z - ts, z + ts + 1):
- self.add_block((dx, dy, dz), LEAF, immediate=False)
-
- def _initialize(self):
- # 初始化世界
- hl = WORLDLEN // 2
- mn = 0
- quality = 4
- gmap = [[0 for x in range(0, WORLDLEN)]for z in range(0, WORLDLEN)]
- for x in range(0, WORLDLEN):
- for z in range(0, WORLDLEN):
- gmap[x - hl][z - hl] += round(PerlinNoise(x / quality, z / quality) * quality)
- mn = min(mn, gmap[x - hl][z - hl])
- for x in range(-hl, hl):
- for z in range(-hl, hl):
- gmap[x][z] += abs(mn)
- if gmap[x][z] < 2:
- self.add_block((x, -1, z), random.choice([SAND, STONE]))
- self.add_block((x, 0, z), WATER)
- self.add_block((x, 1, z), WATER)
- else:
- for y in range(-1, gmap[x][z]):
- self.add_block((x, y, z), STONE)
- self.add_block((x, gmap[x][z], z), GRASS)
- self.add_block((x, -2, z), ENDSTONE)
- for x in range(-hl, hl, 4):
- for z in range(-hl, hl, 4):
- if x == 0 and z == 0:
- continue
- if random.randint(0, 3) == 1 and gmap[x][z] > 1:
- self.tree(gmap[x][z] + 1, x, z)
- for i in range(x, x + 4):
- for j in range(z, z + 4):
- self._show_block((i, 30, j), CLOUD)
- elif random.randint(0, 4) == 2 and gmap[x][z] > 2:
- self.add_block((x, gmap[x][z] + 1, z), random.choice([PUMKEY, MELON]))
- return gmap[0][0] + abs(mn) + 2
-
-
- def hit_test(self, position, vector, max_distance=8):
- m = 8
- x, y, z = position
- dx, dy, dz = vector
- previous = None
- for _ in range(max_distance * m):
- key = normalize((x, y, z))
- if key != previous and key in self.world:
- return key, previous
- previous = key
- x, y, z = x + dx / m, y + dy / m, z + dz / m
- return None, None
-
- def exposed(self, position):
- x, y, z = position
- for dx, dy, dz in FACES:
- if (x + dx, y + dy, z + dz) not in self.world:
- return True
- return False
-
- def add_block(self, position, texture, immediate=True):
- if position in self.world:
- self.remove_block(position, immediate)
- self.world[position] = texture
- self.sectors.setdefault(sectorize(position), []).append(position)
- if immediate:
- if self.exposed(position):
- self.show_block(position)
- self.check_neighbors(position)
-
- def remove_block(self, position, immediate=True):
- del self.world[position]
- self.sectors[sectorize(position)].remove(position)
- if immediate:
- if position in self.shown:
- self.hide_block(position)
- self.check_neighbors(position)
-
- def check_neighbors(self, position):
- x, y, z = position
- for dx, dy, dz in FACES:
- key = (x + dx, y + dy, z + dz)
- if key not in self.world:
- continue
- if self.exposed(key):
- if key not in self.shown:
- self.show_block(key)
- else:
- if key in self.shown:
- self.hide_block(key)
-
- def show_block(self, position, immediate=True):
- texture = self.world[position]
- self.shown[position] = texture
- if immediate:
- self._show_block(position, texture)
- else:
- self._enqueue(self._show_block, position, texture)
-
- def _show_block(self, position, texture):
- x, y, z = position
- vertex_data = cube_vertices(x, y, z, 0.5)
- texture_data = list(texture)
- self._shown[position] = self.batch.add(24, GL_QUADS, self.group,
- ('v3f/static', vertex_data),
- ('t2f/static', texture_data))
-
- def hide_block(self, position, immediate=True):
- self.shown.pop(position)
- if immediate:
- self._hide_block(position)
- else:
- self._enqueue(self._hide_block, position)
-
- def _hide_block(self, position):
- self._shown.pop(position).delete()
-
- def show_sector(self, sector):
- for position in self.sectors.get(sector, []):
- if position not in self.shown and self.exposed(position):
- self.show_block(position, False)
-
- def hide_sector(self, sector):
- for position in self.sectors.get(sector, []):
- if position in self.shown:
- self.hide_block(position, False)
-
- def change_sectors(self, before, after):
- before_set = set()
- after_set = set()
- pad = 4
- for dx in range(-pad, pad + 1):
- for dy in [0]:
- for dz in range(-pad, pad + 1):
- if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2:
- continue
- if before:
- x, y, z = before
- before_set.add((x + dx, y + dy, z + dz))
- if after:
- x, y, z = after
- after_set.add((x + dx, y + dy, z + dz))
- show = after_set - before_set
- hide = before_set - after_set
- for sector in show:
- self.show_sector(sector)
- for sector in hide:
- self.hide_sector(sector)
-
- def _enqueue(self, func, *args):
- self.queue.append((func, args))
-
- def _dequeue(self):
- func, args = self.queue.popleft()
- func(*args)
-
- def process_queue(self):
- start = time.perf_counter()
- while self.queue and time.perf_counter() - start < 1.0 / TICKS_PER_SEC:
- self._dequeue()
-
- def process_entire_queue(self):
- while self.queue:
- self._dequeue()
-
-
- class Window(pyglet.window.Window):
- def __init__(self, *args, **kwargs):
- super(Window, self).__init__(*args, **kwargs)
- self.exclusive = False
- self.flying = False # 是否在飞行
- self.walking = True # 是否在走路
- self.jumping = False # 是否在跳
- self.model = Model()
- self.strafe = [0, 0]
- self.position = (0, self.model.dfy, 0)
- self.rotation = (0, 0)
- self.sector = None
- self.reticle = None
- self.dy = 0
- self.inventory = [GRASS, DIRT, STONE, SAND, WOOD, BRICK, PUMKEY, MELON, TNT]
- self.block = self.inventory[0]
- self.num_keys = [
- key._1, key._2, key._3, key._4, key._5,
- key._6, key._7, key._8, key._9, key._0]
- self.label = pyglet.text.Label('', font_name='Arial', font_size=18,
- x=10, y=self.height - 10, anchor_x='left', anchor_y='top',
- color=(0, 0, 0, 255))
- pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC)
-
- def set_exclusive_mouse(self, exclusive):
- super(Window, self).set_exclusive_mouse(exclusive)
- self.exclusive = exclusive
-
- def get_sight_vector(self):
- x, y = self.rotation
- m = math.cos(math.radians(y))
- dy = math.sin(math.radians(y))
- dx = math.cos(math.radians(x - 90)) * m
- dz = math.sin(math.radians(x - 90)) * m
- return (dx, dy, dz)
-
- def get_motion_vector(self):
- if any(self.strafe):
- x, y = self.rotation
- strafe = math.degrees(math.atan2(*self.strafe))
- y_angle = math.radians(y)
- x_angle = math.radians(x + strafe)
- if self.flying:
- m = math.cos(y_angle)
- dy = math.sin(y_angle)
- if self.strafe[1]:
- dy = 0.0
- m = 1
- if self.strafe[0] > 0:
- dy *= -1
- dx = math.cos(x_angle) * m
- dz = math.sin(x_angle) * m
- else:
- dy = 0.0
- dx = math.cos(x_angle)
- dz = math.sin(x_angle)
- else:
- dy = 0.0
- dx = 0.0
- dz = 0.0
- return (dx, dy, dz)
-
- def update(self, dt):
- # 刷新
- global GTIME
- global GNIGHT
- global GDAY
- glClearColor(0.5 - GTIME * 0.01, 0.69 - GTIME * 0.01, 1.0 - GTIME * 0.01, 1)
- setup_fog()
- GTIME += GDAY if GTIME < 23 else GNIGHT
- if GTIME > 50:
- GTIME = 50
- GNIGHT = -GNIGHT
- GDAY = -GDAY
- elif GTIME < 0:
- GTIME = 0
- GNIGHT = -GNIGHT
- GDAY = -GDAY
- self.model.process_queue()
- sector = sectorize(self.position)
- if sector != self.sector:
- self.model.change_sectors(self.sector, sector)
- if self.sector is None:
- self.model.process_entire_queue()
- self.sector = sector
- m = 8
- dt = min(dt, 0.2)
- if self.jumping:
- if self.dy == 0:
- self.dy = JUMP_SPEED
- for _ in range(m):
- self._update(dt / m)
-
- def _update(self, dt):
- speed = FLYING_SPEED if self.flying else WALKING_SPEED if self.walking else RUNNING_SPEED
- d = dt * speed
- dx, dy, dz = self.get_motion_vector()
- dx, dy, dz = dx * d, dy * d, dz * d
- if not self.flying:
- self.dy -= dt * GRAVITY
- self.dy = max(self.dy, -TERMINAL_VELOCITY)
- dy += self.dy * dt
- x, y, z = self.position
- x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT)
- self.position = (x, y, z)
-
- def collide(self, position, height):
- pad = 0.25
- p = list(position)
- np = normalize(position)
- for face in FACES:
- for i in range(3):
- if not face[i]:
- continue
- d = (p[i] - np[i]) * face[i]
- if d < pad:
- continue
- for dy in range(height):
- op = list(np)
- op[1] -= dy
- op[i] += face[i]
- if tuple(op) not in self.model.world:
- continue
- p[i] -= (d - pad) * face[i]
- if face == (0, -1, 0) or face == (0, 1, 0):
- self.dy = 0
- break
- return tuple(p)
-
- def TNTboom(self, x, y, z):
- # TNT爆炸
- self.model.remove_block((x, y, z))
- bf = 4
- s = 0
- for dy in range(y - bf, y):
- for i in range(x - s, x + s):
- for j in range(z - s, z + s):
- if (i, dy, j) in self.model.world:
- if j == z-s or j == z+s-1 or i == x-s or i == x+s-1:
- if random.randint(0, 1):
- if self.model.world[(i, dy, j)] == TNT:
- self.TNTboom(i, dy, j)
- continue
- if self.model.world[(i, dy, j)] != ENDSTONE:
- self.model.remove_block((i, dy, j))
- else:
- if self.model.world[(i, dy, j)] == TNT:
- self.TNTboom(i, dy, j)
- continue
- if self.model.world[(i, dy, j)] != ENDSTONE:
- self.model.remove_block((i, dy, j))
- s += 1
- s = bf
- for i in range(x - s, x + s):
- for j in range(z - s, z + s):
- if (i, y, j) in self.model.world:
- if j == z-s or j == z+s-1 or i == x-s or i == x+s-1:
- if random.randint(0, 1):
- if self.model.world[(i, y, j)] == TNT:
- self.TNTboom(i, y, j)
- continue
- self.model.remove_block((i, y, j))
- else:
- if self.model.world[(i, y, j)] == TNT:
- self.TNTboom(i, y, j)
- continue
- self.model.remove_block((i, y, j))
- for dy in range(y + 1, y + s + 1):
- for i in range(x - s, x + s):
- for j in range(z - s, z + s):
- if (i, dy, j) in self.model.world:
- if j == z-s or j == z+s-1 or i == x-s or i == x+s-1:
- if random.randint(0, 1):
- if self.model.world[(i, dy, j)] == TNT:
- self.TNTboom(i, dy, j)
- continue
- if self.model.world[(i, dy, j)] != ENDSTONE:
- self.model.remove_block((i, dy, j))
- else:
- if self.model.world[(i, dy, j)] == TNT:
- self.TNTboom(i, dy, j)
- continue
- if self.model.world[(i, dy, j)] != ENDSTONE:
- self.model.remove_block((i, dy, j))
- s -= 1
-
- def on_mouse_press(self, x, y, button, modifiers):
- if self.exclusive:
- vector = self.get_sight_vector()
- block, previous = self.model.hit_test(self.position, vector)
- if (button == mouse.RIGHT) or \
- ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)):
- if previous:
- # 鼠标右击
- x, y, z = self.position
- flag = True
- for i in range(0, PLAYER_HEIGHT):
- if previous == normalize((x, y - i, z)):
- flag = False
- break
- if flag:
- self.model.add_block(previous, self.block)
- elif button == pyglet.window.mouse.LEFT and block:
- # 鼠标左击
- texture = self.model.world[block]
- if texture == TNT:
- self.TNTboom(block[0], block[1], block[2])
- elif texture != ENDSTONE:
- self.model.remove_block(block)
- else:
- self.set_exclusive_mouse(True)
-
- def on_mouse_motion(self, x, y, dx, dy):
- if self.exclusive:
- m = 0.15
- x, y = self.rotation
- x, y = x + dx * m, y + dy * m
- y = max(-90, min(90, y))
- self.rotation = (x, y)
-
- def on_key_press(self, symbol, modifiers):
- # 键盘按键
- if symbol == key.W:
- self.strafe[0] -= 1
- elif symbol == key.S:
- self.strafe[0] += 1
- elif symbol == key.A:
- self.strafe[1] -= 1
- elif symbol == key.D:
- self.strafe[1] += 1
- elif symbol == key.SPACE:
- self.jumping = True
- elif symbol == key.R:
- self.walking = not self.walking
- elif symbol == key.ESCAPE:
- self.set_exclusive_mouse(False)
- elif symbol == key.E:
- self.set_exclusive_mouse(False)
- elif symbol == key.TAB:
- self.flying = not self.flying
- elif symbol in self.num_keys:
- index = (symbol - self.num_keys[0]) % len(self.inventory)
- self.block = self.inventory[index]
-
- def on_key_release(self, symbol, modifiers):
- # 键盘松键
- if symbol == key.W:
- self.strafe[0] += 1
- elif symbol == key.S:
- self.strafe[0] -= 1
- elif symbol == key.A:
- self.strafe[1] += 1
- elif symbol == key.D:
- self.strafe[1] -= 1
- elif symbol == key.SPACE:
- self.jumping = False
-
- def on_resize(self, width, height):
- # label
- self.label.y = height - 10
- # reticle
- if self.reticle:
- self.reticle.delete()
- x, y = self.width // 2, self.height // 2
- n = 10
- self.reticle = pyglet.graphics.vertex_list(4,
- ('v2i', (x - n, y, x + n, y, x, y - n, x, y + n))
- )
-
- def set_2d(self):
- # 3d模式
- width, height = self.get_size()
- glDisable(GL_DEPTH_TEST)
- viewport = self.get_viewport_size()
- glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
- glMatrixMode(GL_PROJECTION)
- glLoadIdentity()
- glOrtho(0, max(1, width), 0, max(1, height), -1, 1)
- glMatrixMode(GL_MODELVIEW)
- glLoadIdentity()
-
- def set_3d(self):
- # 3d模式
- width, height = self.get_size()
- glEnable(GL_DEPTH_TEST)
- viewport = self.get_viewport_size()
- glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
- glMatrixMode(GL_PROJECTION)
- glLoadIdentity()
- gluPerspective(65.0, width / float(height), 0.1, 60.0)
- glMatrixMode(GL_MODELVIEW)
- glLoadIdentity()
- x, y = self.rotation
- glRotatef(x, 0, 1, 0)
- glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))
- x, y, z = self.position
- glTranslatef(-x, -y, -z)
-
- def on_draw(self):
- # 绘制
- self.clear()
- self.set_3d()
- glColor3d(1, 1, 1)
- self.model.batch.draw()
- self.draw_focused_block()
- self.set_2d()
- self.draw_label()
- self.draw_reticle()
-
- def draw_focused_block(self):
- vector = self.get_sight_vector()
- block = self.model.hit_test(self.position, vector)[0]
- if block:
- x, y, z = block
- vertex_data = cube_vertices(x, y, z, 0.51)
- glColor3d(0, 0, 0)
- glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)
- pyglet.graphics.draw(24, GL_QUADS, ('v3f/static', vertex_data))
- glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)
-
- def draw_label(self):
- x, y, z = self.position
- self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % (
- pyglet.clock.get_fps(), x, y, z,
- len(self.model._shown), len(self.model.world))
- self.label.draw()
-
- def draw_reticle(self):
- glColor3d(0, 0, 0)
- self.reticle.draw(GL_LINES)
-
-
- def setup_fog():
- # 初始化迷雾和光照
- glEnable(GL_FOG)
- glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5 - GTIME * 0.01, 0.69 - GTIME * 0.01, 1.0 - GTIME * 0.01, 1))
- glHint(GL_FOG_HINT, GL_DONT_CARE)
- glFogi(GL_FOG_MODE, GL_LINEAR)
- glFogf(GL_FOG_START, 30.0)
- glFogf(GL_FOG_END, 60.0)
- glLightfv(GL_LIGHT0, GL_POSITION, (GLfloat * 4)(0.0, 0.0, 0.0, 0.0))
- setup_light()
-
- def setup_light():
- # 初始化光照
- gamelight = 5.0 - GTIME / 10
- glLightfv(GL_LIGHT0, GL_AMBIENT, (GLfloat * 4)(gamelight, gamelight, gamelight, 1.0))
- glLightfv(GL_LIGHT0, GL_DIFFUSE, (GLfloat * 4)(gamelight, gamelight, gamelight, 1.0))
- glLightfv(GL_LIGHT0, GL_SPECULAR, (GLfloat * 4)(1.0, 1.0, 1.0, 1.0))
- glEnable(GL_LIGHTING)
- glEnable(GL_LIGHT0)
-
- def setup():
- # 初始化
- glClearColor(0.5 - GTIME * 0.01, 0.69 - GTIME * 0.01, 1.0 - GTIME * 0.01, 1)
- glEnable(GL_CULL_FACE)
- glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)
- glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)
- setup_fog()
-
- def main():
- window = Window(width=800, height=600, caption='Minecraft 2.1', resizable=True)
- window.set_exclusive_mouse(True)
- setup()
- pyglet.app.run()
是不是很长呢?
三、主程序运行(其实它是最简单的!)
奉上代码!
- if __name__ == '__main__':
- print("Welcome play python Minecraft 2.1")
- print("Snow Word is open:", GAMETYPES)
- print("World Seed:", SEED)
- main()
最后程序简单不简单?
四、效果图
一、一般世界
二、冰雪世界
是不是很酷?
五、图片资源
注意:命名为texture2_1哦!
六、知识总结
python非常厉害,非常实用!大家可以来试一试哦!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。