当前位置:   article > 正文

BloomFilter(布隆过滤器)_false-positive probability

false-positive probability

前言

映射是个非常有意思的东西。hash函数是把任意类型的数据映射成等长的字节码,用于快速查询,加密等;

bitmap 类似桶排序,最大的数是多少,就有多少位,一个数存不存在就看对应的位里是0还是1。

布隆过滤器是对bitmap的改进,提升了空间利用率。

导图

这里写图片描述

布隆过滤器主要是用于大数据的查询。

布隆过滤器是通过k个hash函数散列出k个位矩阵上的点,如果这些点都是1则说明该数据存在,否则只要有一个不是1就不存在。也就是说布隆过滤器算出不存在的数肯定不存在,算出存在的数可能存在也可能不存在。它是牺牲正确率来换取空间。

  • 简介:布隆过滤器实际上是一个很长的二进制向量一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
  • 原理:当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在
  • 优点:相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数(O(k))。而且它不存储元素本身,在某些对保密要求非常严格的场合有优势。
  • 缺点:一定的误识别率和删除困难。
    结合以上几点及去重需求(容忍误判,会误判在,在则丢,无妨),决定使用BlomFilter。

思想

位数组k个散列函数

  1. 位数组
    初始状态时,BloomFilter是一个长度为m的位数组,每一位都置为0。
    这里写图片描述
  2. 添加元素(k个独立的hash函数)
    添加元素时,对x使用k个哈希函数得到k个哈希值,对m取余,对应的bit位设置为1。
    这里写图片描述
  3. 判断元素是否存在
    判断y是否属于这个集合,对y使用k个哈希函数得到k个哈希值,对m取余,所有对应的位置都是1,则认为y属于该集合(哈希冲突,可能存在误判),否则就认为y不属于该集合。
    图中y1不是集合中的元素,y2属于这个集合或者是一个false positive。
    这里写图片描述
    BloomFilter有以下参数:
    • m 位数组的长度
    • n 加入其中元素的数量
    • k 哈希函数的个数
    • f False Positive

问题:如何根据输入元素个数n,确定位数组的大小m和哈希函数的个数k?

BloomFilter的f满足下列公式:
这里写图片描述
在给定m和n时,能够使f最小化的k值为:
这里写图片描述
此时给出的f为:
这里写图片描述
根据以上公式,对于任意给定的f,我们有:
这里写图片描述
同时,我们需要k个hash来达成这个目标:
这里写图片描述
由于k必须取整数,我们在Bloom Filter的程序实现中,还应该使用上面的公式来求得实际的f:
这里写图片描述
以上3个公式是程序实现Bloom Filter的关键公式。
故可以通过调节参数,使用Hash函数的个数,位数组的大小来降低失误率

实现

可以使用JDK自带的BitSet来实现,但存在两个问题:OOM和持久化问题
结合Redis的BitMap能够解决,唯一需要注意的是Redis的BitMap只支持232大小,对应到内存也就是512MB,数组的下标最大只能是232-1。不过这个限制可以通过构建多个Redis的Bitmap通过hash取模的方式分散一下即可。万分之一的误判率,512MB可以放下2亿条数据。
好了,扯了这么多,贴代码!(注:在MagnusS/Java-BloomFilter的基础上加上了Redis持久化的实现)

@Component
public class BloomFilter<E> {

    @Autowired
    private RedisTemplate<String, E> redisTemplate;

    @Value("${bloomfilter.expireDays}")
    private long expireDays;

    // total length of the Bloom filter
    private int sizeOfBloomFilter;
    // expected (maximum) number of elements to be added
    private int expectedNumberOfFilterElements;
    // number of hash functions
    private int numberOfHashFunctions;
    // encoding used for storing hash values as strings
    private final Charset charset = Charset.forName("UTF-8");
    // MD5 gives good enough accuracy in most circumstances. Change to SHA1 if it's needed
    private static final String hashName = "MD5";
    private static final MessageDigest digestFunction;

    // The digest method is reused between instances
    static {
        MessageDigest tmp;
        try {
            tmp = java.security.MessageDigest.getInstance(hashName);
        } catch (NoSuchAlgorithmException e) {
            tmp = null;
        }
        digestFunction = tmp;
    }

    public BloomFilter() {
        this(0.0001, 600000);
    }

    /**
     * Constructs an empty Bloom filter.
     *
     * @param m is the total length of the Bloom filter.
     * @param n is the expected number of elements the filter will contain.
     * @param k is the number of hash functions used.
     */
    public BloomFilter(int m, int n, int k) {
        this.sizeOfBloomFilter = m;
        this.expectedNumberOfFilterElements = n;
        this.numberOfHashFunctions = k;
    }

    /**
     * Constructs an empty Bloom filter with a given false positive probability.
     * The size of bloom filter and the number of hash functions is estimated
     * to match the false positive probability.
     *
     * @param falsePositiveProbability is the desired false positive probability.
     * @param expectedNumberOfElements is the expected number of elements in the Bloom filter.
     */
    public BloomFilter(double falsePositiveProbability, int expectedNumberOfElements) {
        this((int) Math.ceil((int) Math.ceil(-(Math.log(falsePositiveProbability) / Math.log(2))) * expectedNumberOfElements / Math.log(2)), // m = ceil(kn/ln2)
                expectedNumberOfElements,
                (int) Math.ceil(-(Math.log(falsePositiveProbability) / Math.log(2)))); // k = ceil(-ln(f)/ln2)
    }

    /**
     * Adds an object to the Bloom filter. The output from the object's
     * toString() method is used as input to the hash functions.
     *
     * @param element is an element to register in the Bloom filter.
     */
    public void add(E element) {
        add(element.toString().getBytes(charset));
    }

    /**
     * Adds an array of bytes to the Bloom filter.
     *
     * @param bytes array of bytes to add to the Bloom filter.
     */
    public void add(byte[] bytes) {
        if (redisTemplate.opsForValue().get(RedisConsts.CRAWLER_BLOOMFILTER) == null) {
            redisTemplate.opsForValue().setBit(RedisConsts.CRAWLER_BLOOMFILTER, 0, false);
            redisTemplate.expire(RedisConsts.CRAWLER_BLOOMFILTER, expireDays, TimeUnit.DAYS);
        }

        int[] hashes = createHashes(bytes, numberOfHashFunctions);
        for (int hash : hashes) {
            redisTemplate.opsForValue().setBit(RedisConsts.CRAWLER_BLOOMFILTER, Math.abs(hash % sizeOfBloomFilter), true);
        }
    }

    /**
     * Adds all elements from a Collection to the Bloom filter.
     *
     * @param c Collection of elements.
     */
    public void addAll(Collection<? extends E> c) {
        for (E element : c) {
            add(element);
        }
    }

    /**
     * Returns true if the element could have been inserted into the Bloom filter.
     * Use getFalsePositiveProbability() to calculate the probability of this
     * being correct.
     *
     * @param element element to check.
     * @return true if the element could have been inserted into the Bloom filter.
     */
    public boolean contains(E element) {
        return contains(element.toString().getBytes(charset));
    }

    /**
     * Returns true if the array of bytes could have been inserted into the Bloom filter.
     * Use getFalsePositiveProbability() to calculate the probability of this
     * being correct.
     *
     * @param bytes array of bytes to check.
     * @return true if the array could have been inserted into the Bloom filter.
     */
    public boolean contains(byte[] bytes) {
        int[] hashes = createHashes(bytes, numberOfHashFunctions);
        for (int hash : hashes) {
            if (!redisTemplate.opsForValue().getBit(RedisConsts.CRAWLER_BLOOMFILTER, Math.abs(hash % sizeOfBloomFilter))) {
                return false;
            }
        }
        return true;
    }

    /**
     * Returns true if all the elements of a Collection could have been inserted
     * into the Bloom filter. Use getFalsePositiveProbability() to calculate the
     * probability of this being correct.
     *
     * @param c elements to check.
     * @return true if all the elements in c could have been inserted into the Bloom filter.
     */
    public boolean containsAll(Collection<? extends E> c) {
        for (E element : c) {
            if (!contains(element)) {
                return false;
            }
        }
        return true;
    }

    /**
     * Generates digests based on the contents of an array of bytes and splits the result into 4-byte int's and store them in an array. The
     * digest function is called until the required number of int's are produced. For each call to digest a salt
     * is prepended to the data. The salt is increased by 1 for each call.
     *
     * @param data   specifies input data.
     * @param hashes number of hashes/int's to produce.
     * @return array of int-sized hashes
     */
    public static int[] createHashes(byte[] data, int hashes) {
        int[] result = new int[hashes];

        int k = 0;
        byte salt = 0;
        while (k < hashes) {
            byte[] digest;
            synchronized (digestFunction) {
                digestFunction.update(salt);
                salt++;
                digest = digestFunction.digest(data);
            }

            for (int i = 0; i < digest.length / 4 && k < hashes; i++) {
                int h = 0;
                for (int j = (i * 4); j < (i * 4) + 4; j++) {
                    h <<= 8;
                    h |= ((int) digest[j]) & 0xFF;
                }
                result[k] = h;
                k++;
            }
        }
        return result;
    }

    public int getSizeOfBloomFilter() {
        return this.sizeOfBloomFilter;
    }

    public int getExpectedNumberOfElements() {
        return this.expectedNumberOfFilterElements;
    }

    public int getNumberOfHashFunctions() {
        return this.numberOfHashFunctions;
    }

    /**
     * Compares the contents of two instances to see if they are equal.
     *
     * @param obj is the object to compare to.
     * @return True if the contents of the objects are equal.
     */
    @Override
    public boolean equals(Object obj) {
        if (obj == null) {
            return false;
        }
        if (getClass() != obj.getClass()) {
            return false;
        }
        final BloomFilter<E> other = (BloomFilter<E>) obj;
        if (this.sizeOfBloomFilter != other.sizeOfBloomFilter) {
            return false;
        }
        if (this.expectedNumberOfFilterElements != other.expectedNumberOfFilterElements) {
            return false;
        }
        if (this.numberOfHashFunctions != other.numberOfHashFunctions) {
            return false;
        }
        return true;
    }

    /**
     * Calculates a hash code for this class.
     *
     * @return hash code representing the contents of an instance of this class.
     */
    @Override
    public int hashCode() {
        int hash = 7;
        hash = 61 * hash + this.sizeOfBloomFilter;
        hash = 61 * hash + this.expectedNumberOfFilterElements;
        hash = 61 * hash + this.numberOfHashFunctions;
        return hash;
    }

    public static void main(String[] args) {
        BloomFilter<String> bloomFilter = new BloomFilter<>(0.0001, 600000);
        System.out.println(bloomFilter.getSizeOfBloomFilter());
        System.out.println(bloomFilter.getNumberOfHashFunctions());
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242

小结

总之,这些想把大量数据压缩用更小的空间存储并且快速查询到的算法都是借助了把数据映射到位上。下一篇将提及到bitset(位集)也涉及到了映射的思想。都是自己的理解,如有建议,欢迎指出。

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
  

闽ICP备14008679号