赞
踩
现有hbase的查询工具有很多如:Hive,Tez,Impala,Shark/Spark,Phoenix等。phoenix是一个在hbase上面实现的基于hadoop的OLTP技术,具有低延迟、事务性、可使用sql、提供jdbc接口的特点。 而且phoenix还提供了hbase二级索引的解决方案,丰富了hbase查询的多样性,继承了hbase海量数据快速随机查询的特点。但是在生产环境中,不可以用在OLTP中。在线事务处理的环境中,需要低延迟,而Phoenix在查询HBase时,虽然做了一些优化,但延迟还是不小。所以依然是用在OLAT中,再将结果返回存储下来。
Phoenix完全使用Java编写,作为HBase内嵌的JDBC驱动。Phoenix查询引擎会将SQL查询转换为一个或多个HBase扫描,并编排执行以生成标准的JDBC结果集。直接使用HBase API、协同处理器与自定义过滤器,对于简单查询来说,其性能量级是毫秒,对于百万级别的行数来说,其性能量级是秒。
环境说明:
hbase:2.1.5
springboot:2.1.1.RELEASE
hadoop :2.8.5
java: 8+
Phoenix:5.0.0
hadoop环境:Hadoop 2.8.5 完全分布式HA高可用安装(二)–环境搭建
hbase环境:hbase 2.1 环境搭建–完全分布式模式 Advanced - Fully Distributed
官网:http://phoenix.apache.org/index.html
apache-phoenix-5.0.0-HBase-2.0-bin.tar.gz
上传到每一台机器,然后解压。我这里的目录是/data/program/apache-phoenix-5.0.0-HBase-2.0-bin
。phoenix-5.0.0-HBase-2.0-server.jar
这个jar包拷贝到每一台机器的hbase的lib目录下cd /data/program/apache-phoenix-5.0.0-HBase-2.0-bin
cp phoenix-5.0.0-HBase-2.0-server.jar ../hbase-2.1.5/lib/
cd /data/program/hbase-2.1.5/bin
./stop-hbase.sh
./start-hbase.sh
验证是否部署成功,这里使用Phoenix提供的命令行工具。
cd /data/program/apache-phoenix-5.0.0-HBase-2.0-bin/bin [root@node4 bin]# ./sqlline.py node1,node2,node3:2181 Setting property: [incremental, false] Setting property: [isolation, TRANSACTION_READ_COMMITTED] issuing: !connect jdbc:phoenix:node1,node2,node3:2181 none none org.apache.phoenix.jdbc.PhoenixDriver Connecting to jdbc:phoenix:node1,node2,node3:2181 19/07/22 14:16:01 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Connected to: Phoenix (version 5.0) Driver: PhoenixEmbeddedDriver (version 5.0) Autocommit status: true Transaction isolation: TRANSACTION_READ_COMMITTED Building list of tables and columns for tab-completion (set fastconnect to true to skip)... 133/133 (100%) Done Done sqlline version 1.2.0 0: jdbc:phoenix:node1,node2,node3:2181> !tables +------------+--------------+-------------+---------------+----------+------------+----------------------------+-----------------+--------------+-----------------+---------------+-----------+ | TABLE_CAT | TABLE_SCHEM | TABLE_NAME | TABLE_TYPE | REMARKS | TYPE_NAME | SELF_REFERENCING_COL_NAME | REF_GENERATION | INDEX_STATE | IMMUTABLE_ROWS | SALT_BUCKETS | MULTI_TEN | +------------+--------------+-------------+---------------+----------+------------+----------------------------+-----------------+--------------+-----------------+---------------+-----------+ | | SYSTEM | CATALOG | SYSTEM TABLE | | | | | | false | null | false | | | SYSTEM | FUNCTION | SYSTEM TABLE | | | | | | false | null | false | | | SYSTEM | LOG | SYSTEM TABLE | | | | | | true | 32 | false | | | SYSTEM | SEQUENCE | SYSTEM TABLE | | | | | | false | null | false | | | SYSTEM | STATS | SYSTEM TABLE | | | | | | false | null | false | +------------+--------------+-------------+---------------+----------+------------+----------------------------+-----------------+--------------+-----------------+---------------+-----------+
可以看到Phoenix已经安装部署成功。
注意 ./sqlline.py node1,node2,node3:2181
后面跟的hbase使用的zk的地址。
!tables
可以查看所有的表,这里列出来的表是上面再启动phoenix时创建的系统表。
下面演示一下创建表,插入语句,查询的操作。
0: jdbc:phoenix:node1,node2,node3:2181> create table person (id integer not null primary key,name varchar,age integer);
No rows affected (2.581 seconds)
0: jdbc:phoenix:node1,node2,node3:2181> upsert into person values (1,'zhangsan' ,18);
1 row affected (0.315 seconds)
0: jdbc:phoenix:node1,node2,node3:2181> select * from PERSON
. . . . . . . . . . . . . . . . . . . > ;
+-----+-----------+------+
| ID | NAME | AGE |
+-----+-----------+------+
| 1 | zhangsan | 18 |
+-----+-----------+------+
1 row selected (0.237 seconds)
注意Phoenix是区分大小写的,默认列名表名会全部转为大写。如果想要小写需要使用双引号来标识。
我们在hbase shell 中查看一下Phoenix创建的表:
hbase(main):007:0> list TABLE PERSON SYSTEM.CATALOG SYSTEM.FUNCTION SYSTEM.LOG SYSTEM.MUTEX SYSTEM.SEQUENCE SYSTEM.STATS test 8 row(s) Took 0.0812 seconds => ["PERSON", "SYSTEM.CATALOG", "SYSTEM.FUNCTION", "SYSTEM.LOG", "SYSTEM.MUTEX", "SYSTEM.SEQUENCE", "SYSTEM.STATS", "test"] hbase(main):008:0> scan 'PERSON' ROW COLUMN+CELL \x80\x00\x00\x01 column=0:\x00\x00\x00\x00, timestamp=1563776971049, value=x \x80\x00\x00\x01 column=0:\x80\x0B, timestamp=1563776971049, value=zhangsan \x80\x00\x00\x01 column=0:\x80\x0C, timestamp=1563776971049, value=\x80\x00\x00\x12 1 row(s) Took 0.0541 seconds
上面PERSON表只有一个rowkey,有三列,默认列族名称是0
,这里rowkey,列族和列都是Phoenix处理过的。
可以看到,hbase shell可以把Phoenix的表都列出来,而且都是可以操作的。
一切正常,但是我们之前已经在hbase中通过hbase shell 创建了一个test表,这里没有展示,如何是好?
先看一下我们test表都有哪些数据
hbase(main):013:0> scan 'test'
ROW COLUMN+CELL
row1 column=cf:a, timestamp=1563441734398, value=value1
row1 column=cf:age, timestamp=1563779499842, value=12
row2 column=cf:a, timestamp=1563451278532, value=value2a
row2 column=cf:age, timestamp=1563779513308, value=13
row2 column=cf:b, timestamp=1563441738877, value=value2
row3 column=cf:c, timestamp=1563441741609, value=value3
3 row(s)
我们需要创建一个view来匹配原有的hbase创建的表
CREATE view "test" (
"ROW" VARCHAR primary key,
"cf"."a" VARCHAR,
"cf"."b" VARCHAR,
"cf"."c" VARCHAR,
"cf"."age" SMALLINT
);
注意这里的age是SMALLINT,因为age序列化后只有两个字节。Phoenix与hbase数据类型映射比较苛刻,如果使用INTEGER会报错,因为INTEGER是4个字节。
读者可以试一下将age设置成INTEGER
,会报错:Error: ERROR 201 (22000): Illegal data. Expected length of at least 4 bytes, but had 2 (state=22000,code=201)
。
Phoenix数据类型参考 http://phoenix.apache.org/language/datatypes.html
完整示例:
0: jdbc:phoenix:node1,node2,node3:2181> CREATE view "test" ( . . . . . . . . . . . . . . . . . . . > "ROW" VARCHAR primary key, . . . . . . . . . . . . . . . . . . . > "cf"."a" VARCHAR, . . . . . . . . . . . . . . . . . . . > "cf"."b" VARCHAR, . . . . . . . . . . . . . . . . . . . > "cf"."c" VARCHAR, . . . . . . . . . . . . . . . . . . . > "cf"."age" SMALLINT . . . . . . . . . . . . . . . . . . . > ); No rows affected (0.142 seconds) 0: jdbc:phoenix:node1,node2,node3:2181> !table +------------+--------------+-------------+---------------+----------+------------+----------------------------+-----------------+--------------+-----------------+---------------+-----------+ | TABLE_CAT | TABLE_SCHEM | TABLE_NAME | TABLE_TYPE | REMARKS | TYPE_NAME | SELF_REFERENCING_COL_NAME | REF_GENERATION | INDEX_STATE | IMMUTABLE_ROWS | SALT_BUCKETS | MULTI_TEN | +------------+--------------+-------------+---------------+----------+------------+----------------------------+-----------------+--------------+-----------------+---------------+-----------+ | | SYSTEM | CATALOG | SYSTEM TABLE | | | | | | false | null | false | | | SYSTEM | FUNCTION | SYSTEM TABLE | | | | | | false | null | false | | | SYSTEM | LOG | SYSTEM TABLE | | | | | | true | 32 | false | | | SYSTEM | SEQUENCE | SYSTEM TABLE | | | | | | false | null | false | | | SYSTEM | STATS | SYSTEM TABLE | | | | | | false | null | false | | | | PERSON | TABLE | | | | | | false | null | false | | | | test | VIEW | | | | | | false | null | false | +------------+--------------+-------------+---------------+----------+------------+----------------------------+-----------------+--------------+-----------------+---------------+-----------+ 0: jdbc:phoenix:node1,node2,node3:2181> select * from "test"; +-------+----------+---------+---------+---------+ | ROW | a | b | c | age | +-------+----------+---------+---------+---------+ | row1 | value1 | | | -20174 | | row2 | value2a | value2 | | -20173 | | row3 | | | value3 | null | +-------+----------+---------+---------+---------+ 3 rows selected (0.265 seconds)
虽然age使用SMALLINT进行映射不会报错,但是结果明显不是我们想要的结果,具体数据类型的对应后续在研究,这里先简单使用VARCHAR来映射。
删除视图:drop view "test"
。重新创建视图:
0: jdbc:phoenix:node1,node2,node3:2181> drop view "test" . . . . . . . . . . . . . . . . . . . > ; No rows affected (0.013 seconds) 0: jdbc:phoenix:node1,node2,node3:2181> CREATE view "test" ( . . . . . . . . . . . . . . . . . . . > "ROW" VARCHAR primary key, . . . . . . . . . . . . . . . . . . . > "cf"."a" VARCHAR, . . . . . . . . . . . . . . . . . . . > "cf"."b" VARCHAR, . . . . . . . . . . . . . . . . . . . > "cf"."c" VARCHAR, . . . . . . . . . . . . . . . . . . . > "cf"."age" VARCHAR . . . . . . . . . . . . . . . . . . . > ); No rows affected (0.123 seconds) 0: jdbc:phoenix:node1,node2,node3:2181> select * from "test"; +-------+----------+---------+---------+------+ | ROW | a | b | c | age | +-------+----------+---------+---------+------+ | row1 | value1 | | | 12 | | row2 | value2a | value2 | | 13 | | row3 | | | value3 | | +-------+----------+---------+---------+------+ 3 rows selected (0.384 seconds)
这样age展示就正常了。
命令:!exit
除了上面直接使用命令行,也可以使用psql.py命令来操作外部文件,一些复杂的SQL和数据这样操作更加方便。
cd /data/program/apache-phoenix-5.0.0-HBase-2.0-bin/bin
./psql.py node1,node2,node3:2181 ../examples/WEB_STAT.sql
上面命令执行完成,就在Phoenix创建了一个表WEB_STAT 。../examples/WEB_STAT.sql
是压缩包自带的demo:
CREATE TABLE IF NOT EXISTS WEB_STAT (
HOST CHAR(2) NOT NULL,
DOMAIN VARCHAR NOT NULL,
FEATURE VARCHAR NOT NULL,
DATE DATE NOT NULL,
USAGE.CORE BIGINT,
USAGE.DB BIGINT,
STATS.ACTIVE_VISITOR INTEGER
CONSTRAINT PK PRIMARY KEY (HOST, DOMAIN, FEATURE, DATE)
);
命令:./psql.py -t WEB_STAT node1,node2,node3:2181 ../examples/WEB_STAT.csv
…/examples/WEB_STAT.csv 文件是数据文件,上面命令将其导入到表WEB_STAT 中。
[root@node4 bin]# cat ../examples/WEB_STAT.csv NA,Salesforce.com,Login,2013-01-01 01:01:01,35,42,10 EU,Salesforce.com,Reports,2013-01-02 12:02:01,25,11,2 EU,Salesforce.com,Reports,2013-01-02 14:32:01,125,131,42 NA,Apple.com,Login,2013-01-01 01:01:01,35,22,40 NA,Salesforce.com,Dashboard,2013-01-03 11:01:01,88,66,44 NA,Salesforce.com,Login,2013-01-04 06:01:21,3,52,1 EU,Apple.com,Mac,2013-01-01 01:01:01,35,22,34 NA,Salesforce.com,Login,2013-01-04 11:01:11,23,56,45 EU,Salesforce.com,Reports,2013-01-05 03:11:12,75,22,3 EU,Salesforce.com,Dashboard,2013-01-06 05:04:05,12,22,43 EU,Salesforce.com,Reports,2013-01-05 04:14:12,475,252,53 NA,Google.com,Analytics,2013-01-07 06:01:01,23,1,57 NA,Apple.com,Mac,2013-01-02 04:01:01,345,255,155 NA,Google.com,Search,2013-01-08 08:01:01,345,242,46 NA,Salesforce.com,Login,2013-01-08 14:11:01,345,242,10 NA,Salesforce.com,Reports,2013-01-09 16:33:01,35,42,15 NA,Salesforce.com,Reports,2013-01-09 17:36:01,355,432,315 EU,Apple.com,Store,2013-01-03 01:01:01,345,722,170 NA,Salesforce.com,Login,2013-01-10 01:01:01,345,252,150 EU,Google.com,Search,2013-01-09 01:01:01,395,922,190 NA,Apple.com,Login,2013-01-04 01:01:01,135,2,110 NA,Salesforce.com,Dashboard,2013-01-11 01:01:01,335,32,30 NA,Apple.com,iPad,2013-01-05 01:01:01,85,2,18 EU,Salesforce.com,Login,2013-01-12 01:01:01,5,62,150 NA,Google.com,Search,2013-01-10 01:05:01,835,282,80 NA,Apple.com,iPad,2013-01-06 01:01:01,35,22,10 EU,Salesforce.com,Reports,2013-01-13 08:04:04,355,52,5 NA,Google.com,Analytics,2013-01-11 01:02:01,7,2,7 NA,Google.com,Search,2013-01-12 01:01:01,8,7,6 NA,Apple.com,iPad,2013-01-07 01:01:01,9,27,7 NA,Salesforce.com,Dashboard,2013-01-14 04:07:01,5,2,9 NA,Salesforce.com,Reports,2013-01-15 04:09:01,65,26,6 NA,Salesforce.com,Reports,2013-01-15 07:09:01,655,426,46 EU,Google.com,Analytics,2013-01-13 08:06:01,25,2,6 NA,Apple.com,Mac,2013-01-08 01:01:01,3,2,10 NA,Salesforce.com,Login,2013-01-16 01:01:01,785,782,80 NA,Google.com,Analytics,2013-01-14 01:01:01,65,252,56 NA,Salesforce.com,Login,2013-01-17 01:01:01,355,242,33 NA,Salesforce.com,Login,2013-01-17 02:20:01,1235,2422,243
执行查询:
0: jdbc:phoenix:node1,node2,node3:2181> select * from WEB_STAT;
+-------+-----------------+------------+--------------------------+-------+-------+-----------------+
| HOST | DOMAIN | FEATURE | DATE | CORE | DB | ACTIVE_VISITOR |
+-------+-----------------+------------+--------------------------+-------+-------+-----------------+
| EU | Apple.com | Mac | 2013-01-01 01:01:01.000 | 35 | 22 | 34 |
| EU | Apple.com | Store | 2013-01-03 01:01:01.000 | 345 | 722 | 170 |
| EU | Google.com | Analytics | 2013-01-13 08:06:01.000 | 25 | 2 | 6 |
| EU | Google.com | Search | 2013-01-09 01:01:01.000 | 395 | 922 | 190 |
| EU | Salesforce.com | Dashboard | 2013-01-06 05:04:05.000 | 12 | 22 | 43 |
| EU | Salesforce.com | Login | 2013-01-12 01:01:01.000 | 5 | 62 | 150 |
| EU | Salesforce.com | Reports | 2013-01-02 12:02:01.000 | 25 | 11 | 2 |
| EU | Salesforce.com | Reports | 2013-01-02 14:32:01.000 | 125 | 131 | 42 |
0: jdbc:phoenix:node1,node2,node3:2181> select count(1) from WEB_STAT;
+-----------+
| COUNT(1) |
+-----------+
| 39 |
+-----------+
1 row selected (0.148 seconds)
0: jdbc:phoenix:node1,node2,node3:2181> select avg(core) from WEB_STAT;
+------------------+
| AVG(USAGE.CORE) |
+------------------+
| 217.0769 |
+------------------+
0: jdbc:phoenix:node1,node2,node3:2181> select domain,count(1) c from WEB_STAT group by domain order by c ; +-----------------+-----+ | DOMAIN | C | +-----------------+-----+ | Google.com | 8 | | Apple.com | 9 | | Salesforce.com | 22 | +-----------------+-----+ 3 rows selected (0.126 seconds) 0: jdbc:phoenix:node1,node2,node3:2181> select domain,count(1) c, avg(core),sum(db) from WEB_STAT group by domain order by c ; +-----------------+-----+------------------+----------------+ | DOMAIN | C | AVG(USAGE.CORE) | SUM(USAGE.DB) | +-----------------+-----+------------------+----------------+ | Google.com | 8 | 212.875 | 1710 | | Apple.com | 9 | 114.1111 | 1076 | | Salesforce.com | 22 | 260.7272 | 5668 | +-----------------+-----+------------------+----------------+ 3 rows selected (0.247 seconds)
更多phoenix语法请参考官网:http://phoenix.apache.org/language/index.html
SQuirrel是一个图形化界面工具。由于Phoenix是一个JDBC驱动程序,因此与此类工具的集成是无缝的。通过SQuirrel,您可以在SQL选项卡中发出SQL语句(创建表,插入数据,运行查询),并在“对象”选项卡中检查表元数据(即列表,列,主键和类型)。
下载地址:http://squirrel-sql.sourceforge.net/#installation
下载下来是squirrel-sql-3.9.1-standard.jar
。
我们的hbase和hadoop等都是安装在虚拟机中的,这里squirrel客户端我们安装在宿主机Windows机器上。
使用命令java -jar squirrel-sql-3.9.1-standard.jar
进行安装,全部默认点击next即可。
安装完成后,默认是安装在C:\Program Files\squirrel-sql-3.9.1
文件夹。
配置Phoenix客户端并启动
apache-phoenix-5.0.0-HBase-2.0-bin.tar.gz
中的phoenix-5.0.0-HBase-2.0-client.jar
jar包拷贝到squirrel-sql-3.9.1\lib
文件夹下。然后双击squirrel-sql.bat
文件启动squirrel-sql-client
。
这里name随便写,
URL填jdbc:phoenix:node1,node2,node3:2181
,
className填org.apache.phoenix.jdbc.PhoenixDriver
点击OK保存。
之后进入squirrel-sql-client界面。
注意:SQL区分大小写,默认会转为大写,如果我们想要小写,需要加双引号。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。