当前位置:   article > 正文

一文教你读懂AI是什么_ai是函数吗

ai是函数吗

AI是什么

AI,“Artificial Intelligence”的缩写,中文“人工智能”;可以理解为让机器具备类似人的智能,从而代替人类完成某些工作和任务。

  • “强人工智能”

    能够像人类一样去思考和推理,具备自我意识

  • “弱人工智能”

    机器表现出来的特征是智能的,但是不具备自我意识

    • 通过相关规则编程,使机器按照程序逻辑完成特定的任务
    • 针对某一任务向机器提供大量数据,使机器自己去学习,继而挖掘出规律,从而完成任务
弱人工智能
机器学习

从模型层次结构的角度可以分为浅层学习和深度学习

浅层学习(Shallow Learning)
  • 模型层次较浅,通常没有隐藏层、或只有一层隐藏层
  • 可以做一些预测、分类、聚类、降低数据维度、压缩数据、商品推荐系统等工作
  • 常见算法:
    • 线性回归
    • 逻辑回归
    • 随机森林
    • SVM
    • K-means
    • RBM
    • AutoEncoder
    • PCA
    • SOM
    • ……
深度学习(Deep Learning)
  • “深”是因为通常具有较多的隐藏层,进而拥有表达更多复杂函数的能力,进而能识别更复杂的特征
  • 主要集中在CNN 和RNN
  • CNN
    • CNN为Convolution Neural NetWorks的缩写,也就是卷积神经网络
    • 主要应用于计算机视觉、图像分类领域
    • 应用场景示例
      • 美颜相机的滤镜
      • 交通监控识别车辆车型、车牌号
      • 商汤人脸识别
      • 无人车
      • ……
  • RNN
    • Recurrent Neual NetWorks的缩写,递归神经网络
    • 基于RNN还衍生出LSTM(Long-Short-Term-Memerory) 和GRU(Gated Recurrent Unit)等
    • 具有记忆过去的能力,故用来处理一些有时间序列属性的数据,处理语言、文字具有优势
    • 应用场景示例:
      • Siri对话机器人
      • 谷歌翻译,机器翻译
      • 语音转文字
      • ……

AI本质

AI本质上都是一个函数

AI其实就是我们提供机器目前已有的数据,机器从数据去找出一个最能拟合这些数据的函数;当有新的数据需要预测时,机器通过之前找到的函数去预测新数据的对应结果。

  • 通用要素

    AI = 数据+算法+模型

  • 示例讲解—分类器模型为区分A 和B

    • 数据

      • 准备大量已标注过 是A 还是B的图片
      • 只有数据量足够大,模型才能够学习足够准确的 区分A 和B的特征,在进行最终的AB任务区分上,才能表现出足够高的准确性
    • 算法

      • 网络架构设计:构建模型时,采用浅层网络还是深层网络,如为深层,则需多少层,每层油多少神经元,功能是什么等

      • 预测函数的大致结构
        Y = f ( W , X , b ) Y= f(W,X,b) Y=f(W,X,b)
        Y ,是已有的图片数据的标签;(A和B的图片)

        X,是已有的用来训练的数据;(该图是A 还是B)

        W,权重;b,偏差 ; 这两个参数通过机器学习后得出

      • 寻找W 和b 的过程,就是模型训练的过程

    • 模型

      • 将数据带入算法中训练,机器不断学习,当机器找到最优 W 权重,b 偏差;就意味着模型 train成功了

      • 函数模型
        Y = f ( W , X , b ) Y=f(W,X,b) Y=f(W,X,b)

      • 提供新的数据输入该模型,算出新的数据是A或者B,即为模型的预测功能

不管是简单的线性回归,还是复杂的深度神经网络模型,本质都是寻找一个能够良好拟合目前已有数据的函数
Y = f ( W , X , b ) Y=f(W,X,b) Y=f(WXb)
并且这个函数在新的未知数据上也能够表现良好。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/514171
推荐阅读
相关标签
  

闽ICP备14008679号