赞
踩
格式
enumerate(iterable, start=0)
功能
返回一个枚举对象, 其中iterable必须是序列,迭代器或其他支持迭代的对象.迭代器的__next__()
方法的返回值,通过enumerate返回,值类型为tuple,包括从start(默认为0)技术的数字和迭代器包含的数据.
li = ["tianlanlan", "yunbaibai", "shuiqingqing"]
en_li = enumerate(li)
print("enumerate list: {}".format(list(en_li)))
for idx, value in enumerate(li):
print("idx: {} value: {}".format(idx, value))
enumerate list: [(0, 'tianlanlan'), (1, 'yunbaibai'), (2, 'shuiqingqing')]
idx: 0 value: tianlanlan
idx: 1 value: yunbaibai
idx: 2 value: shuiqingqing
x_sample = np.random.rand(4, 3)
print("x_sample: {}".format(x_sample))
for idx, value in enumerate(x_sample):
print("idx: {} value: {}".format(idx, value))
x_sample: [[0.73356379 0.46344017 0.12340443]
[0.96689566 0.70792431 0.87034476]
[0.73511355 0.77274115 0.05571193]
[0.56135686 0.33162721 0.82986378]]
idx: 0 value: [0.73356379 0.46344017 0.12340443]
idx: 1 value: [0.96689566 0.70792431 0.87034476]
idx: 2 value: [0.73511355 0.77274115 0.05571193]
idx: 3 value: [0.56135686 0.33162721 0.82986378]
enumerate
将的编号为0,1,2,3个数为行数,数据为列中存储的数据;import numpy as np
z_sample = np.random.uniform(-1, 1, size=(2 , 3, 3))
print("z sample: {}".format(z_sample))
for idx, value in enumerate(z_sample):
print("idx: {} value: {}".format(idx, value))
z sample: [[[-0.11212024 -0.69009897 -0.66992379]
[-0.26245796 -0.86990319 0.00199974]
[ 0.65475913 -0.61089172 0.37564042]]
[[-0.54160346 0.5907193 0.9643114 ]
[ 0.34624219 0.31073878 -0.78359222]
[ 0.26297166 -0.70019566 0.0950346 ]]]
idx: 0 value: [[-0.11212024 -0.69009897 -0.66992379]
[-0.26245796 -0.86990319 0.00199974]
[ 0.65475913 -0.61089172 0.37564042]]
idx: 1 value: [[-0.54160346 0.5907193 0.9643114 ]
[ 0.34624219 0.31073878 -0.78359222]
[ 0.26297166 -0.70019566 0.0950346 ]]
格式
sum(iterable, start)
功能
计算iterable(可遍历数据list,tuple,set)和,start为需要另外相加的数。
import numpy as np
a = np.array([1, 2, 3])
print("a: {}".format(a))
b = a.tolist()
print("b: {}".format(b))
c = sum(b)
print("sum: {}".format(c))
d = sum(b, 2)
print("sum extra add 2: {}".format(d))
a: [1 2 3]
b: [1, 2, 3]
sum: 6
sum extra add 2: 8
(1) enumerate为数据提供编号,可通过编号处理相应数据;
(2) 二维或多维数组使用enumerate进行处理,编号为数组的第一个维度数据,数据为其他维度;
(3) 对于图像处理,如Tensorflow的四维数组[1, 250, 250, 3]或batch图像[128, 250, 250, 3],使用enumerate可用于提取图像数据,用于保存或编辑.
[参考文献]
[1]https://docs.python.org/3.6/library/functions.html?highlight=enumerate#enumerate
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。