赞
踩
贴一下汇总贴:论文阅读记录
论文链接:《Dynamic Spatial-Temporal Graph Convolutional Neural Networks for Traffic Forecasting》
图卷积神经网络(GCNN)已经成为一个日益活跃的研究领域。它用一个基于节点距离的预定义拉普拉斯矩阵来建模图中节点的空间依赖关系。然而,在许多应用场景中,空间依赖关系会随着时间而改变,使用固定的拉普拉斯矩阵无法捕捉这种变化。为了追踪交通数据之间的空间依赖性,我们提出了一种动态时空GCNN来精确预测交通。我们的深度学习框架的核心是用动态拉普拉斯矩阵估计来寻找拉普拉斯矩阵的变化。为了在低复杂度的情况下实现及时学习,我们创造性地将张量分解纳入深度学习框架,将实时交通数据分解为稳定的、依赖于长期时空交通关系的全局分量和捕捉交通波动的局部分量。在理论推导的基础上,提出了一种估计具有上述两个分量的图的动态拉普拉斯矩阵的新设计,并介绍了我们的设计依据。利用两个实时交通数据集对预测性能进行了评估。实验结果表明,该网络可以提高25%的准确率。
可能的研究方向:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。