当前位置:   article > 正文

tf.keras.optimizers 常用的优化器

tf.keras.optimizers

SGD

tf.keras.optimizers.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False)

随机梯度下降法,支持动量参数,支持学习衰减率,支持Nesterov动量

  • lr:大或等于0的浮点数,学习率

  • momentum:大或等于0的浮点数,动量参数

  • decay:大或等于0的浮点数,每次更新后的学习率衰减值

  • nesterov:布尔值,确定是否使用Nesterov动量

RMSprop 

tf.keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-06)

除学习率可调整外,建议保持优化器的其他默认参数不变

该优化器通常是面对递归神经网络时的一个良好选择

  • lr:大或等于0的浮点数,学习率

  • rho:大或等于0的浮点数

  • epsilon:大或等于0的小浮点数,防止除0错误

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/552299
推荐阅读
相关标签
  

闽ICP备14008679号