赞
踩
tf.keras.optimizers.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False)
随机梯度下降法,支持动量参数,支持学习衰减率,支持Nesterov动量
lr:大或等于0的浮点数,学习率
momentum:大或等于0的浮点数,动量参数
decay:大或等于0的浮点数,每次更新后的学习率衰减值
nesterov:布尔值,确定是否使用Nesterov动量
tf.keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-06)
除学习率可调整外,建议保持优化器的其他默认参数不变
该优化器通常是面对递归神经网络时的一个良好选择
lr:大或等于0的浮点数,学习率
rho:大或等于0的浮点数
epsilon:大或等于0的小浮点数,防止除0错误
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。