当前位置:   article > 正文

基于深度学习神经网络YOLOv5目标检测的人脸表情识别系统_yolo 表情识别

yolo 表情识别

第一步:YOLOv5介绍

YOLOv5是一种目标检测算法,它是YOLO(You Only Look Once)系列的最新版本。YOLOv5在YOLOv4的基础上进行了改进和优化,以提高检测的准确性和速度。

YOLOv5采用了一些新的技术和方法来改进目标检测的性能。其中包括以下几个方面:

  1. 损失函数:YOLOv5使用了CIOU_Loss作为bounding box的损失函数。CIOU_Loss是一种改进的IOU_Loss,可以更好地衡量目标框的位置和大小。

  2. 非极大值抑制(NMS):YOLOv5使用NMS来抑制重叠的边界框,以减少重复检测的问题。

  3. 聚类anchors:YOLOv5使用k-means聚类算法来生成anchors,这些anchors用于检测不同尺度的目标。

总的来说,YOLOv5在YOLOv4的基础上进行了一些改进和优化,以提高目标检测的准确性和速度。

标注数据,YOLOv5的训练和测试步骤,各路大神都已经做了很多工作,我就不再写了,这里有几个写的比较好的博客可以参考:

无脑008——yolov5目标检测全流程,训练自己的庞大数据集,半自动标注数据集_python 实现yolov5s 目标检测训练-CSDN博客


基于YOLOV5的数据集标注&训练,Windows/Linux/Jetson Nano多平台部署全流程-CSDN博客

使用 YOLOv5 训练自建数据集教程 - 知乎

这里的表情识别相当于是一步到位,检测到人脸的时候,也判断出此人脸属于什么表情,市面上大部分表情识别的做法是两步,第一步检测到人脸,第二步基于fer2013训练一个分类网络来判断检测到的人脸属于什么表情。

第二步:YOLOv5网络结构

第三步:代码展示

  1. """Train a YOLOv5 model on a custom dataset
  2. Usage:
  3. $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
  4. """
  5. import argparse
  6. import logging
  7. import os
  8. import random
  9. import sys
  10. import time
  11. import warnings
  12. from copy import deepcopy
  13. from pathlib import Path
  14. from threading import Thread
  15. import math
  16. import numpy as np
  17. import torch.distributed as dist
  18. import torch.nn as nn
  19. import torch.nn.functional as F
  20. import torch.optim as optim
  21. import torch.optim.lr_scheduler as lr_scheduler
  22. import torch.utils.data
  23. import yaml
  24. from torch.cuda import amp
  25. from torch.nn.parallel import DistributedDataParallel as DDP
  26. from torch.utils.tensorboard import SummaryWriter
  27. from tqdm import tqdm
  28. FILE = Path(__file__).absolute()
  29. sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
  30. import val # for end-of-epoch mAP
  31. from models.experimental import attempt_load
  32. from models.yolo import Model
  33. from utils.autoanchor import check_anchors
  34. from utils.datasets import create_dataloader
  35. from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
  36. strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
  37. check_requirements, print_mutation, set_logging, one_cycle, colorstr
  38. from utils.google_utils import attempt_download
  39. from utils.loss import ComputeLoss
  40. from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
  41. from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
  42. from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
  43. from utils.metrics import fitness
  44. LOGGER = logging.getLogger(__name__)
  45. LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
  46. RANK = int(os.getenv('RANK', -1))
  47. WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
  48. def train(hyp, # path/to/hyp.yaml or hyp dictionary
  49. opt,
  50. device,
  51. ):
  52. save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, = \
  53. opt.save_dir, opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
  54. opt.resume, opt.noval, opt.nosave, opt.workers
  55. # Directories
  56. save_dir = Path(save_dir)
  57. wdir = save_dir / 'weights'
  58. wdir.mkdir(parents=True, exist_ok=True) # make dir
  59. last = wdir / 'last.pt'
  60. best = wdir / 'best.pt'
  61. results_file = save_dir / 'results.txt'
  62. # Hyperparameters
  63. if isinstance(hyp, str):
  64. with open(hyp) as f:
  65. hyp = yaml.safe_load(f) # load hyps dict
  66. LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
  67. # Save run settings
  68. with open(save_dir / 'hyp.yaml', 'w') as f:
  69. yaml.safe_dump(hyp, f, sort_keys=False)
  70. with open(save_dir / 'opt.yaml', 'w') as f:
  71. yaml.safe_dump(vars(opt), f, sort_keys=False)
  72. # Configure
  73. plots = not evolve # create plots
  74. cuda = device.type != 'cpu'
  75. init_seeds(1 + RANK)
  76. with open(data) as f:
  77. data_dict = yaml.safe_load(f) # data dict
  78. # Loggers
  79. loggers = {'wandb': None, 'tb': None} # loggers dict
  80. if RANK in [-1, 0]:
  81. # TensorBoard
  82. if not evolve:
  83. prefix = colorstr('tensorboard: ')
  84. LOGGER.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
  85. loggers['tb'] = SummaryWriter(str(save_dir))
  86. # W&B
  87. opt.hyp = hyp # add hyperparameters
  88. run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
  89. run_id = run_id if opt.resume else None # start fresh run if transfer learning
  90. wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
  91. loggers['wandb'] = wandb_logger.wandb
  92. if loggers['wandb']:
  93. data_dict = wandb_logger.data_dict
  94. weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # may update weights, epochs if resuming
  95. nc = 1 if single_cls else int(data_dict['nc']) # number of classes
  96. names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
  97. assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, data) # check
  98. is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset
  99. # Model
  100. pretrained = weights.endswith('.pt')
  101. if pretrained:
  102. with torch_distributed_zero_first(RANK):
  103. weights = attempt_download(weights) # download if not found locally
  104. ckpt = torch.load(weights, map_location=device) # load checkpoint
  105. model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  106. exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
  107. state_dict = ckpt['model'].float().state_dict() # to FP32
  108. state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
  109. model.load_state_dict(state_dict, strict=False) # load
  110. LOGGER.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
  111. else:
  112. model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  113. with torch_distributed_zero_first(RANK):
  114. check_dataset(data_dict) # check
  115. train_path = data_dict['train']
  116. val_path = data_dict['val']
  117. # Freeze
  118. freeze = [] # parameter names to freeze (full or partial)
  119. for k, v in model.named_parameters():
  120. v.requires_grad = True # train all layers
  121. if any(x in k for x in freeze):
  122. print('freezing %s' % k)
  123. v.requires_grad = False
  124. # Optimizer
  125. nbs = 64 # nominal batch size
  126. accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
  127. hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
  128. LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
  129. pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
  130. for k, v in model.named_modules():
  131. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
  132. pg2.append(v.bias) # biases
  133. if isinstance(v, nn.BatchNorm2d):
  134. pg0.append(v.weight) # no decay
  135. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
  136. pg1.append(v.weight) # apply decay
  137. if opt.adam:
  138. optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  139. else:
  140. optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  141. optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
  142. optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
  143. LOGGER.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
  144. del pg0, pg1, pg2
  145. # Scheduler https://arxiv.org/pdf/1812.01187.pdf
  146. # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
  147. if opt.linear_lr:
  148. lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
  149. else:
  150. lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
  151. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
  152. # plot_lr_scheduler(optimizer, scheduler, epochs)
  153. # EMA
  154. ema = ModelEMA(model) if RANK in [-1, 0] else None
  155. # Resume
  156. start_epoch, best_fitness = 0, 0.0
  157. if pretrained:
  158. # Optimizer
  159. if ckpt['optimizer'] is not None:
  160. optimizer.load_state_dict(ckpt['optimizer'])
  161. best_fitness = ckpt['best_fitness']
  162. # EMA
  163. if ema and ckpt.get('ema'):
  164. ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
  165. ema.updates = ckpt['updates']
  166. # Results
  167. if ckpt.get('training_results') is not None:
  168. results_file.write_text(ckpt['training_results']) # write results.txt
  169. # Epochs
  170. start_epoch = ckpt['epoch'] + 1
  171. if resume:
  172. assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
  173. if epochs < start_epoch:
  174. LOGGER.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
  175. (weights, ckpt['epoch'], epochs))
  176. epochs += ckpt['epoch'] # finetune additional epochs
  177. del ckpt, state_dict
  178. # Image sizes
  179. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  180. nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
  181. imgsz = check_img_size(opt.imgsz, gs) # verify imgsz is gs-multiple
  182. # DP mode
  183. if cuda and RANK == -1 and torch.cuda.device_count() > 1:
  184. logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
  185. 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
  186. model = torch.nn.DataParallel(model)
  187. # SyncBatchNorm
  188. if opt.sync_bn and cuda and RANK != -1:
  189. raise Exception('can not train with --sync-bn, known issue https://github.com/ultralytics/yolov5/issues/3998')
  190. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  191. LOGGER.info('Using SyncBatchNorm()')
  192. # Trainloader
  193. train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
  194. hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=RANK,
  195. workers=workers, image_weights=opt.image_weights, quad=opt.quad,
  196. prefix=colorstr('train: '))
  197. mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
  198. nb = len(train_loader) # number of batches
  199. assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, data, nc - 1)
  200. # Process 0
  201. if RANK in [-1, 0]:
  202. val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
  203. hyp=hyp, cache=opt.cache_images and not noval, rect=True, rank=-1,
  204. workers=workers, pad=0.5,
  205. prefix=colorstr('val: '))[0]
  206. if not resume:
  207. labels = np.concatenate(dataset.labels, 0)
  208. # c = torch.tensor(labels[:, 0]) # classes
  209. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  210. # model._initialize_biases(cf.to(device))
  211. if plots:
  212. plot_labels(labels, names, save_dir, loggers)
  213. # Anchors
  214. if not opt.noautoanchor:
  215. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  216. model.half().float() # pre-reduce anchor precision
  217. # DDP mode
  218. if cuda and RANK != -1:
  219. model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
  220. # Model parameters
  221. hyp['box'] *= 3. / nl # scale to layers
  222. hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
  223. hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
  224. hyp['label_smoothing'] = opt.label_smoothing
  225. model.nc = nc # attach number of classes to model
  226. model.hyp = hyp # attach hyperparameters to model
  227. model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
  228. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
  229. model.names = names
  230. # Start training
  231. t0 = time.time()
  232. nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
  233. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  234. last_opt_step = -1
  235. maps = np.zeros(nc) # mAP per class
  236. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  237. scheduler.last_epoch = start_epoch - 1 # do not move
  238. scaler = amp.GradScaler(enabled=cuda)
  239. compute_loss = ComputeLoss(model) # init loss class
  240. LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
  241. f'Using {train_loader.num_workers} dataloader workers\n'
  242. f'Logging results to {save_dir}\n'
  243. f'Starting training for {epochs} epochs...')
  244. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  245. model.train()
  246. # Update image weights (optional)
  247. if opt.image_weights:
  248. # Generate indices
  249. if RANK in [-1, 0]:
  250. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
  251. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  252. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  253. # Broadcast if DDP
  254. if RANK != -1:
  255. indices = (torch.tensor(dataset.indices) if RANK == 0 else torch.zeros(dataset.n)).int()
  256. dist.broadcast(indices, 0)
  257. if RANK != 0:
  258. dataset.indices = indices.cpu().numpy()
  259. # Update mosaic border
  260. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  261. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  262. mloss = torch.zeros(4, device=device) # mean losses
  263. if RANK != -1:
  264. train_loader.sampler.set_epoch(epoch)
  265. pbar = enumerate(train_loader)
  266. LOGGER.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
  267. if RANK in [-1, 0]:
  268. pbar = tqdm(pbar, total=nb) # progress bar
  269. optimizer.zero_grad()
  270. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  271. ni = i + nb * epoch # number integrated batches (since train start)
  272. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  273. # Warmup
  274. if ni <= nw:
  275. xi = [0, nw] # x interp
  276. # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
  277. accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
  278. for j, x in enumerate(optimizer.param_groups):
  279. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  280. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  281. if 'momentum' in x:
  282. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  283. # Multi-scale
  284. if opt.multi_scale:
  285. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  286. sf = sz / max(imgs.shape[2:]) # scale factor
  287. if sf != 1:
  288. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  289. imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  290. # Forward
  291. with amp.autocast(enabled=cuda):
  292. pred = model(imgs) # forward
  293. loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
  294. if RANK != -1:
  295. loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
  296. if opt.quad:
  297. loss *= 4.
  298. # Backward
  299. scaler.scale(loss).backward()
  300. # Optimize
  301. if ni - last_opt_step >= accumulate:
  302. scaler.step(optimizer) # optimizer.step
  303. scaler.update()
  304. optimizer.zero_grad()
  305. if ema:
  306. ema.update(model)
  307. last_opt_step = ni
  308. # Print
  309. if RANK in [-1, 0]:
  310. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  311. mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
  312. s = ('%10s' * 2 + '%10.4g' * 6) % (
  313. f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])
  314. pbar.set_description(s)
  315. # Plot
  316. if plots and ni < 3:
  317. f = save_dir / f'train_batch{ni}.jpg' # filename
  318. Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
  319. if loggers['tb'] and ni == 0: # TensorBoard
  320. with warnings.catch_warnings():
  321. warnings.simplefilter('ignore') # suppress jit trace warning
  322. loggers['tb'].add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
  323. elif plots and ni == 10 and loggers['wandb']:
  324. wandb_logger.log({'Mosaics': [loggers['wandb'].Image(str(x), caption=x.name) for x in
  325. save_dir.glob('train*.jpg') if x.exists()]})
  326. # end batch ------------------------------------------------------------------------------------------------
  327. # Scheduler
  328. lr = [x['lr'] for x in optimizer.param_groups] # for loggers
  329. scheduler.step()
  330. # DDP process 0 or single-GPU
  331. if RANK in [-1, 0]:
  332. # mAP
  333. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
  334. final_epoch = epoch + 1 == epochs
  335. if not noval or final_epoch: # Calculate mAP
  336. wandb_logger.current_epoch = epoch + 1
  337. results, maps, _ = val.run(data_dict,
  338. batch_size=batch_size // WORLD_SIZE * 2,
  339. imgsz=imgsz,
  340. model=ema.ema,
  341. single_cls=single_cls,
  342. dataloader=val_loader,
  343. save_dir=save_dir,
  344. save_json=is_coco and final_epoch,
  345. verbose=nc < 50 and final_epoch,
  346. plots=plots and final_epoch,
  347. wandb_logger=wandb_logger,
  348. compute_loss=compute_loss)
  349. # Write
  350. with open(results_file, 'a') as f:
  351. f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
  352. # Log
  353. tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
  354. 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
  355. 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
  356. 'x/lr0', 'x/lr1', 'x/lr2'] # params
  357. for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
  358. if loggers['tb']:
  359. loggers['tb'].add_scalar(tag, x, epoch) # TensorBoard
  360. if loggers['wandb']:
  361. wandb_logger.log({tag: x}) # W&B
  362. # Update best mAP
  363. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
  364. if fi > best_fitness:
  365. best_fitness = fi
  366. wandb_logger.end_epoch(best_result=best_fitness == fi)
  367. # Save model
  368. if (not nosave) or (final_epoch and not evolve): # if save
  369. ckpt = {'epoch': epoch,
  370. 'best_fitness': best_fitness,
  371. 'training_results': results_file.read_text(),
  372. 'model': deepcopy(de_parallel(model)).half(),
  373. 'ema': deepcopy(ema.ema).half(),
  374. 'updates': ema.updates,
  375. 'optimizer': optimizer.state_dict(),
  376. 'wandb_id': wandb_logger.wandb_run.id if loggers['wandb'] else None}
  377. # Save last, best and delete
  378. torch.save(ckpt, last)
  379. if best_fitness == fi:
  380. torch.save(ckpt, best)
  381. if loggers['wandb']:
  382. if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
  383. wandb_logger.log_model(last.parent, opt, epoch, fi, best_model=best_fitness == fi)
  384. del ckpt
  385. # end epoch ----------------------------------------------------------------------------------------------------
  386. # end training -----------------------------------------------------------------------------------------------------
  387. if RANK in [-1, 0]:
  388. LOGGER.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
  389. if plots:
  390. plot_results(save_dir=save_dir) # save as results.png
  391. if loggers['wandb']:
  392. files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
  393. wandb_logger.log({"Results": [loggers['wandb'].Image(str(save_dir / f), caption=f) for f in files
  394. if (save_dir / f).exists()]})
  395. if not evolve:
  396. if is_coco: # COCO dataset
  397. for m in [last, best] if best.exists() else [last]: # speed, mAP tests
  398. results, _, _ = val.run(data_dict,
  399. batch_size=batch_size // WORLD_SIZE * 2,
  400. imgsz=imgsz,
  401. model=attempt_load(m, device).half(),
  402. single_cls=single_cls,
  403. dataloader=val_loader,
  404. save_dir=save_dir,
  405. save_json=True,
  406. plots=False)
  407. # Strip optimizers
  408. for f in last, best:
  409. if f.exists():
  410. strip_optimizer(f) # strip optimizers
  411. if loggers['wandb']: # Log the stripped model
  412. loggers['wandb'].log_artifact(str(best if best.exists() else last), type='model',
  413. name='run_' + wandb_logger.wandb_run.id + '_model',
  414. aliases=['latest', 'best', 'stripped'])
  415. wandb_logger.finish_run()
  416. torch.cuda.empty_cache()
  417. return results
  418. def parse_opt(known=False):
  419. parser = argparse.ArgumentParser()
  420. parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
  421. parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
  422. parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path')
  423. parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path')
  424. parser.add_argument('--epochs', type=int, default=10)
  425. parser.add_argument('--batch-size', type=int, default=4, help='total batch size for all GPUs')
  426. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
  427. parser.add_argument('--rect', action='store_true', help='rectangular training')
  428. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  429. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  430. parser.add_argument('--noval', action='store_true', help='only validate final epoch')
  431. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  432. parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
  433. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  434. parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
  435. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  436. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  437. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  438. parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
  439. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  440. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  441. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  442. parser.add_argument('--project', default='runs/train', help='save to project/name')
  443. parser.add_argument('--entity', default=None, help='W&B entity')
  444. parser.add_argument('--name', default='exp', help='save to project/name')
  445. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  446. parser.add_argument('--quad', action='store_true', help='quad dataloader')
  447. parser.add_argument('--linear-lr', action='store_true', help='linear LR')
  448. parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
  449. parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
  450. parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
  451. parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
  452. parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
  453. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  454. opt = parser.parse_known_args()[0] if known else parser.parse_args()
  455. return opt
  456. def main(opt):
  457. set_logging(RANK)
  458. if RANK in [-1, 0]:
  459. print(colorstr('train: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
  460. check_git_status()
  461. check_requirements(exclude=['thop'])
  462. # Resume
  463. wandb_run = check_wandb_resume(opt)
  464. if opt.resume and not wandb_run: # resume an interrupted run
  465. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  466. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  467. with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
  468. opt = argparse.Namespace(**yaml.safe_load(f)) # replace
  469. opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate
  470. LOGGER.info(f'Resuming training from {ckpt}')
  471. else:
  472. # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
  473. opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
  474. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  475. opt.name = 'evolve' if opt.evolve else opt.name
  476. opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
  477. # DDP mode
  478. device = select_device(opt.device, batch_size=opt.batch_size)
  479. if LOCAL_RANK != -1:
  480. from datetime import timedelta
  481. assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
  482. torch.cuda.set_device(LOCAL_RANK)
  483. device = torch.device('cuda', LOCAL_RANK)
  484. dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=60))
  485. assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
  486. assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
  487. # Train
  488. if not opt.evolve:
  489. train(opt.hyp, opt, device)
  490. if WORLD_SIZE > 1 and RANK == 0:
  491. _ = [print('Destroying process group... ', end=''), dist.destroy_process_group(), print('Done.')]
  492. # Evolve hyperparameters (optional)
  493. else:
  494. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  495. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  496. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  497. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  498. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  499. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  500. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  501. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  502. 'box': (1, 0.02, 0.2), # box loss gain
  503. 'cls': (1, 0.2, 4.0), # cls loss gain
  504. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  505. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  506. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  507. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  508. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  509. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  510. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  511. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  512. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  513. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  514. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  515. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  516. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  517. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  518. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  519. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  520. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  521. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  522. 'mixup': (1, 0.0, 1.0), # image mixup (probability)
  523. 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
  524. with open(opt.hyp) as f:
  525. hyp = yaml.safe_load(f) # load hyps dict
  526. if 'anchors' not in hyp: # anchors commented in hyp.yaml
  527. hyp['anchors'] = 3
  528. assert LOCAL_RANK == -1, 'DDP mode not implemented for --evolve'
  529. opt.noval, opt.nosave = True, True # only val/save final epoch
  530. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  531. yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
  532. if opt.bucket:
  533. os.system(f'gsutil cp gs://{opt.bucket}/evolve.txt .') # download evolve.txt if exists
  534. for _ in range(opt.evolve): # generations to evolve
  535. if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
  536. # Select parent(s)
  537. parent = 'single' # parent selection method: 'single' or 'weighted'
  538. x = np.loadtxt('evolve.txt', ndmin=2)
  539. n = min(5, len(x)) # number of previous results to consider
  540. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  541. w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
  542. if parent == 'single' or len(x) == 1:
  543. # x = x[random.randint(0, n - 1)] # random selection
  544. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  545. elif parent == 'weighted':
  546. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  547. # Mutate
  548. mp, s = 0.8, 0.2 # mutation probability, sigma
  549. npr = np.random
  550. npr.seed(int(time.time()))
  551. g = np.array([x[0] for x in meta.values()]) # gains 0-1
  552. ng = len(meta)
  553. v = np.ones(ng)
  554. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  555. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  556. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  557. hyp[k] = float(x[i + 7] * v[i]) # mutate
  558. # Constrain to limits
  559. for k, v in meta.items():
  560. hyp[k] = max(hyp[k], v[1]) # lower limit
  561. hyp[k] = min(hyp[k], v[2]) # upper limit
  562. hyp[k] = round(hyp[k], 5) # significant digits
  563. # Train mutation
  564. results = train(hyp.copy(), opt, device)
  565. # Write mutation results
  566. print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
  567. # Plot results
  568. plot_evolution(yaml_file)
  569. print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
  570. f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
  571. def run(**kwargs):
  572. # Usage: import train; train.run(imgsz=320, weights='yolov5m.pt')
  573. opt = parse_opt(True)
  574. for k, v in kwargs.items():
  575. setattr(opt, k, v)
  576. main(opt)
  577. if __name__ == "__main__":
  578. opt = parse_opt()
  579. main(opt)

第四步:搭建GUI界面

具体功能包括,图片识别,摄像头和视频流识别的功能

输入选择图片之后(目标检测里面调整IOU和灵敏度这里同样有)

第五步:整个工程的内容

代码的下载路径(新窗口打开链接)基于深度学习神经网络YOLOv5的人脸表情识别系统

有问题可以私信或者留言,有问必答

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/598560
推荐阅读
相关标签
  

闽ICP备14008679号