当前位置:   article > 正文

数据结构与算法---排序算法_排序算法比较时用什么数据结构

排序算法比较时用什么数据结构

1、排序算法介绍

  • 排序也称排序算法(SortAlgorithm),排序是将 一组数据 ,依 指定的顺序 进行 排列 的过程
  • 有很多种不同的排序算法,每一种都有各自的优势和限制
  • 下面我们会一一分析不同种的排序算法并比较他们之间的区别

2、排序的分类

  1. 内部排序:

    指将需要处理的所有数据都加载到 内部存储器( 内存)中进行排序。

  2. 外部排序法:

    数据量过大,无法全部加载到内存中,需要借助 外部存储( 文件等)进行排序。

3、算法的时间复杂度

3.1、度量一个程序(算法)执行时间的两种方法

  • 事后统计:实际运行程序统计时间,但是容易受计算机的软硬件环境影响
  • 事前统计:分析时间复杂度

3.2、时间频度

  • 介绍:一个算法中的语句执行次数称为语句频度或时间频度。记为 T(n)

  • 举例说明:

    1、比如计算1-100所有数字之和, 我们设计两种算法:

    (1)T(n)=n+1

​ (2) T(n)=1

​2、时间频度的表示

​ (1)忽略常数项

​ 结论:

​ 2n+20 和 2n 随着n 变大,执行曲线无限接近, 20可以忽略

​ 3n+10 和 3n 随着n 变大,执行曲线无限接近, 10可以忽略

​ (2)忽略低次项

​ 结论:

​ 2n^2+3n+10 和 2n^2 随着n 变大, 执行曲线无限接近, 可以忽略 3n+10

​ n^2+5n+20 和 n^2 随着n 变大,执行曲线无限接近, 可以忽略 5n+20

​ (3)忽略系数

​ 结论:

​ 随着n值变大,5n^2+7n 和 3n^2 + 2n ,执行曲线重合, 说明 这种情况下, 5和3可以忽略。

​ 而n^3+5n 和 6n^3+4n ,执行曲线分离,说明多少次方式关键

3.3、时间复杂度

1.一般情况下, 算法中的基本操作语句的重复执行次数是问题规模 n 的某个函数,用 T(n)表示,若有某个辅

助函数 f(n),使得当 n 趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称 f(n)是 T(n)的同数量级函数。

记作 T(n)= O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度。

  1. T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的 T(n) 不同,但时间复杂
    度相同,都为 O(n² )。
  2. 计算时间复杂度的方法:
    (1) 用常数 1 代替运行时间中的所有加法常数 T(n)=n²+7n+6 => T(n)=n²+7n+1
    (2)修改后的运行次数函数中,只保留最高阶项 T(n)=n²+7n+1 => T(n) = n²
    (3)去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)

3.4、常见的时间复杂度

  1. 常数阶O(1)
  2. 对数阶O(log2n)
  3. 线性阶O(n)
  4. 线性对数阶O(nlog2n)
  5. 平方阶O(n^2)
  6. 立方阶O(n^3)
  7. k次方阶O(n^k)
  8. 指数阶O(2^n)

说明:

  • 常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) <Ο(2n) ,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低
  • 从图中可见,我们应该尽可能避免使用指数阶的算法

举例说明

1.常数阶O(1)

无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)

上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度

2.对数阶O(log2n)

在while循环里面,每次都将 i 乘以 2,乘完之后, i 距离 n 就越来越近了。假设循环x次之后, i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2n也就是说当循环 log2n 次以后,这个代码就结束了。

因此这个代码的时间复杂度为:O(log2n) 。 O(log2n) 的这个2 时间上是根据代码变化的, i = i * 3 ,则是 O(log3n) .

3.线性阶O(n)

这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度

4.线性对数阶O(nlog2n)

线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)

5.平方阶O(n^2)

平方阶O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²),这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(n*n),即 O(n²) 如果将其中一层循环的n改成m,那它的时间复杂度就变成了 O(m*n)

6.立方阶O(n^3)、 k次方阶O(n^k)

O(n³)相当于三层n循环,其它的类似

3.5、平均时间复杂度和最坏时间复杂度

  1. 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间

  2. 最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长

  3. 平均时间复杂度和最坏时间复杂度是否一致,和算法有关

4、算法的空间复杂度

  • 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数

  • 空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况

  • 在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间.

5、冒泡排序

5.1、冒泡排序简介

冒泡排序(Bubble Sorting)的基本思想是:通过对待排序序列从前向后(从下标较小的元素开始), 依次比较 相邻元素的值,若发现逆序则 交换 ,使值较大的元素逐渐从前移向后部,就象水底下的气泡一样逐渐向上冒。

优化:因为排序的过程中,各元素不断接近自己的位置,如果一趟比较下来没有进行过交换,就说明序列有序,因此要在排序过程中设置

一个标志 flag 判断元素是否进行过交换。从而减少不必要的比较。

5.2、冒泡排序过程演示

  • 图解过程

  • 过程分析

    (1) 一共进行数组的大小 - 1 ( arr.length - 1 )次 大的循环

    (2)每一趟排序的次数在逐渐的减少

    (3) 优化思路:如果我们发现在某趟排序中,没有发生一次交换, 可以提前结束冒泡排序

5.3、冒泡排序代码实现

未优化

public class Test {
    public static void main(String[] args) {
        int arr[] = {3, 9, -1, 10, 20};

        //冒泡排序,时间复杂度O(n²)
        //定义一个临时变量
        int temp = 0;
        for (int i = 0; i < arr.length - 1; i++) {
            for (int j = 0; j < arr.length - 1 - i; j++) {
                //如果前面的数比后面的大,就交换
                if (arr[j] > arr[j + 1]) {
                    temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                }
            }
            System.out.println("第" + (i + 1) + "趟排序后的数组");
            System.out.println(Arrays.toString(arr));
        }


    }
}

结果展示:

优化

public class Test {

    public static void main(String[] args) {
        int arr[] = {3, 9, -1, 10, 20};

        //冒泡排序,时间复杂度O(n²)
        int temp = 0;//定义一个临时变量
        boolean flag = false;//表示变量,表示是否进行过交换
        for (int i = 0; i < arr.length - 1; i++) {
            for (int j = 0; j < arr.length - 1 - i; j++) {
                //如果前面的数比后面的大,就交换
                if (arr[j] > arr[j + 1]) {
                    flag = true;
                    temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                }
            }
            System.out.println("第" + (i + 1) + "趟排序后的数组");
            System.out.println(Arrays.toString(arr));

            if (!flag) {//在一趟排序中,一次交换都没有发生过,!flag也可以写成flag==false
                break;
            } else {
                flag = false;//重置flag,进行下一次判断
            }
        }


    }
}

结果展示:

封装成方法

public class BubbleSort {
    public static void main(String[] args) {
        int arr[] = {3, 9, -1, 10, 20};

        //测试冒泡排序
        System.out.println("排序前的数组");
        System.out.println(Arrays.toString(arr));
        bubbleSort(arr);
        System.out.println("排序后的数组");
        System.out.println(Arrays.toString(arr));

    }

    
    //将前面的冒泡排序封装成一个方法
    public static void bubbleSort(int arr[]){
        //冒泡排序,时间复杂度O(n²)
        int temp = 0;//定义一个临时变量
        boolean flag = false;//表示变量,表示是否进行过交换
        for (int i = 0; i < arr.length - 1; i++) {
            for (int j = 0; j < arr.length - 1 - i; j++) {
                //如果前面的数比后面的大,就交换
                if (arr[j] > arr[j + 1]) {
                    flag = true;
                    temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                }
            }
            //System.out.println("第" + (i + 1) + "趟排序后的数组");
            //System.out.println(Arrays.toString(arr));

            if (!flag) {//在一趟排序中,一次交换都没有发生过,!flag也可以写成flag==false
                break;
            } else {
                flag = false;//重置flag,进行下一次判断
            }
        }

    }



}

结果展示:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/654298
推荐阅读
相关标签
  

闽ICP备14008679号