当前位置:   article > 正文

llama factory学习笔记_llama-factory 教學

llama-factory 教學

模型

模型名模型大小默认模块Template
Baichuan27B/13BW_packbaichuan2
BLOOM560M/1.1B/1.7B/3B/7.1B/176Bquery_key_value-
BLOOMZ560M/1.1B/1.7B/3B/7.1B/176Bquery_key_value-
ChatGLM36Bquery_key_valuechatglm3
DeepSeek (MoE)7B/16B/67Bq_proj,v_projdeepseek
Falcon7B/40B/180Bquery_key_valuefalcon
Gemma2B/7Bq_proj,v_projgemma
InternLM27B/20Bwqkvintern2
LLaMA7B/13B/33B/65Bq_proj,v_proj-
LLaMA-27B/13B/70Bq_proj,v_projllama2
Mistral7Bq_proj,v_projmistral
Mixtral8x7Bq_proj,v_projmistral
Phi-1.5/21.3B/2.7Bq_proj,v_proj-
Qwen1.8B/7B/14B/72Bc_attnqwen
Qwen1.50.5B/1.8B/4B/7B/14B/72Bq_proj,v_projqwen
XVERSE7B/13B/65Bq_proj,v_projxverse
Yi6B/34Bq_proj,v_projyi
Yuan2B/51B/102Bq_proj,v_projyuan

GPU 训练

[!IMPORTANT]
如果您使用多张 GPU 训练模型,请移步多 GPU 分布式训练部分。

预训练
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage pt \
    --do_train \
    --model_name_or_path path_to_llama_model \
    --dataset wiki_demo \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --output_dir path_to_pt_checkpoint \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 5e-5 \
    --num_train_epochs 3.0 \
    --plot_loss \
    --fp16
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
指令监督微调
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --do_train \
    --model_name_or_path path_to_llama_model \
    --dataset alpaca_gpt4_zh \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --output_dir path_to_sft_checkpoint \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 5e-5 \
    --num_train_epochs 3.0 \
    --plot_loss \
    --fp16
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
奖励模型训练
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage rm \
    --do_train \
    --model_name_or_path path_to_llama_model \
    --adapter_name_or_path path_to_sft_checkpoint \
    --create_new_adapter \
    --dataset comparison_gpt4_zh \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --output_dir path_to_rm_checkpoint \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-6 \
    --num_train_epochs 1.0 \
    --plot_loss \
    --fp16
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
PPO 训练
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage ppo \
    --do_train \
    --model_name_or_path path_to_llama_model \
    --adapter_name_or_path path_to_sft_checkpoint \
    --create_new_adapter \
    --dataset alpaca_gpt4_zh \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --reward_model path_to_rm_checkpoint \
    --output_dir path_to_ppo_checkpoint \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --top_k 0 \
    --top_p 0.9 \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-5 \
    --num_train_epochs 1.0 \
    --plot_loss \
    --fp16
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

这些命令行参数用于在单GPU上进行不同类型的模型训练,包括预训练、指令监督微调、奖励模型训练和PPO训练。下面是对每个参数的详细解释:

  1. CUDA_VISIBLE_DEVICES:指定使用哪张GPU进行训练。在这里,它被设置为0,意味着将使用第一张GPU。
  2. python src/train_bash.py:这是训练脚本的路径,它包含执行训练的代码。
  3. –stage pt/sft/rm/ppo:指定训练的阶段。pt代表预训练,sft代表指令监督微调,rm代表奖励模型训练,ppo代表PPO训练。
  4. –do_train:指示脚本执行训练步骤。
  5. –model_name_or_path:指定要训练的模型的名称或路径。
  6. –dataset:指定用于训练的数据集。
  7. –finetuning_type lora:指定微调类型为LoRA,这是一种用于放大模型容量的技术。
  8. –lora_target:指定LoRA适配器的目标模块,这里是指定模型的特定层。
  9. –output_dir:指定训练输出的目录,用于保存检查点和其他相关文件。
  10. –overwrite_cache:如果缓存已存在,此选项将覆盖它。
  11. –per_device_train_batch_size:指定每个设备的训练批次大小。
  12. –gradient_accumulation_steps:指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。
  13. –lr_scheduler_type cosine:指定学习率调度器的类型,这里使用余弦调度器。
  14. –logging_steps:指定记录日志的步数。
  15. –save_steps:指定保存检查点的步数。
  16. –learning_rate:指定学习率。
  17. –num_train_epochs:指定训练的epoch数量。
  18. –plot_loss:在训练过程中绘制损失图。
  19. –fp16:指示使用16位浮点数进行训练,这可以提高训练效率。
  20. –adapter_name_or_path:如果需要,指定适配器的名称或路径,用于迁移学习。
  21. –create_new_adapter:如果需要,创建一个新的适配器。
  22. –reward_model:如果正在进行PPO训练,指定奖励模型的路径。
  23. –top_k和**–top_p**:这些参数用于控制随机抽样的方式,用于生成文本。
    这些参数可以根据不同的模型和任务进行调整。在实际使用中,可能还需要根据具体情况添加或修改其他参数。
    以qwen 14B 举例子
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py     
	--stage pt     
	--do_train     
	--model_name_or_path qwen/Qwen-14B     
	--dataset wiki_demo     
	--finetuning_type lora     
	--lora_target c_attn     
	--output_dir path_to_pt_checkpoint     
	--overwrite_cache     --per_device_train_batch_size 4     
	--gradient_accumulation_steps 4     --lr_scheduler_type cosine     
	--logging_steps 10     --save_steps 1000     --learning_rate 5e-5   
	--num_train_epochs 3.0     --plot_loss     --fp16
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

这里我们看到llama factory的预训练也是基于lora进行预训练的。
显存占用38GB

那么 接下来我们尝试多卡进行 qwen/Qwen-14B lora 预训练

首先配置accelerate,输入只有accelerate config,剩下的内容都是选项。

accelerate config
In which compute environment are you running?
This machine                                                                                                                                                                                                                         
Which type of machine are you using?                                                                                                                                                                                                 
multi-GPU                                                                                                                                                                                                                            
How many different machines will you use (use more than 1 for multi-node training)? [1]: 1                                                                                                                                           
Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: yes                                                                                                   
Do you wish to optimize your script with torch dynamo?[yes/NO]:yes                                                                                                                                                                   
Which dynamo backend would you like to use?                                                                                                                                                                                          
tensorrt                                                                                                                                                                                                                             
Do you want to customize the defaults sent to torch.compile? [yes/NO]:                                                                                                                                                               
Do you want to use DeepSpeed? [yes/NO]: NO                                                                                                                                                                                           
Do you want to use FullyShardedDataParallel? [yes/NO]: M^HNPO^H^H                                                                                                                                                                    
Please enter yes or no.                                                                                                                                                                                                              
Do you want to use FullyShardedDataParallel? [yes/NO]: NO                                                                                                                                                                            
Do you want to use Megatron-LM ? [yes/NO]: yes                                                                                                                                                                                       
What is the Tensor Parallelism degree/size? [1]:1                                                                                                                                                                                    
What is the Pipeline Parallelism degree/size? [1]:1                                                                                                                                                                                  
Do you want to enable selective activation recomputation? [YES/no]: 1                                                                                                                                                                
Please enter yes or no.                                                                                                                                                                                                              
Do you want to enable selective activation recomputation? [YES/no]: YES                                                                                                                                                              
Do you want to use distributed optimizer which shards optimizer state and gradients across data parallel ranks? [YES/no]: YES                                                                                                        
What is the gradient clipping value based on global L2 Norm (0 to disable)? [1.0]: 1

How many GPU(s) should be used for distributed training? [1]:3
Do you wish to use FP16 or BF16 (mixed precision)?
bf16                                                                                                                                                                                                                                 
accelerate configuration saved at /home/ca2/.cache/huggingface/accelerate/default_config.yaml 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

您已经成功地为多GPU训练环境配置了accelerate。以下是您提供的配置的简要概述以及每个选项的含义:

  1. 计算环境:您正在使用本地机器,这可能意味着您将在单台物理服务器或工作站上使用多个GPU。
  2. 机器类型:您正在使用多GPU机器。
  3. 多机器训练:您只计划使用一台机器进行训练,这意味着您将在单节点上进行训练。
  4. 分布式操作检查:您希望在运行时检查分布式操作是否有错误,这样可以避免超时问题,但可能会使训练变慢。
  5. 使用torch dynamo优化:您希望使用torch dynamo来优化您的PyTorch代码,这可以提高性能。
  6. dynamo后端:您选择使用tensorrt作为后端,这通常用于生产环境,可以提供优化的代码。
  7. DeepSpeed:您不打算使用DeepSpeed,这是一个用于深度学习训练的优化库。
  8. FullyShardedDataParallel:您不打算使用FullyShardedDataParallel,这是一个用于数据并行的PyTorch分布式训练的库。
  9. Megatron-LM:您打算使用Megatron-LM,这是一个用于大规模语言模型训练的PyTorch扩展。
  10. Tensor并行度:您设置为1,这意味着您不会使用Tensor并行。
  11. 流水线并行度:您设置为1,这意味着您不会使用流水线并行。
  12. 选择性激活重计算:您启用了选择性激活重计算,这可以提高效率。
  13. 分布式优化器:您启用了分布式优化器,这意味着优化器状态和梯度将在数据并行等级上分片。
  14. 梯度裁剪:您设置了一个基于全局L2范数的梯度裁剪值。
  15. 用于分布式训练的GPU数量:您指定了使用3个GPU进行分布式训练。
  16. FP16或BF16(混合精度):您选择了BF16,这是英伟达的混合精度之一,可以提高训练性能。
    这些配置为您的训练环境提供了一个良好的起点,但您可能需要根据您的具体需求和硬件配置进行调整。在开始训练之前,请确保您的环境变量(如CUDA_VISIBLE_DEVICES)设置正确,以便accelerate可以识别和使用您指定的GPU。
    如果您遇到任何问题或需要进一步的帮助,请随时提问。祝您训练顺利!
accelerate launch src/train_bash.py --stage pt     --do_train     --model_name_or_path qwen/Qwen-14B     --dataset wiki_demo     --finetuning_type lora     --lora_target c_attn     --output_dir path_to_pt_checkpoint     --overwrite_cache     --per_device_train_batch_size 4     --gradient_accumulation_steps 4     --lr_scheduler_type cosine     --logging_steps 10     --save_steps 1000     --learning_rate 5e-5     --num_train_epochs 3.0     --plot_loss     --fp16
  • 1

在这里插入图片描述
成功训练

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/659042
推荐阅读
相关标签
  

闽ICP备14008679号