赞
踩
更多创客作品,请关注笔者网站园丁鸟,搜集全球极具创意,且有价值的创客作品
moveit作为一个很好的机械臂路径规划工具,大大降低了机械臂的开发的难度,很多功能都可以在模拟环境下测试运行,如前面博客中讲到的,但要让真实的机器人能够按照moveit规划好的路径动起来,就需要开发连接机器人和moveit的驱动代码,这一篇我们就介绍一下如何开发针对diego的驱动。
1.首先介绍一下驱动的原理
上图为通讯原理
首先,moveit把计算的结果通过Ros action的方式发送给driver,driver调用Ros_arduino_bridge的servor_write server发送各个关节舵机的控制指令给Arduino uno控制板
其次,同时Driver也要通过调用Ros_arduino_bridge的servo_read服务读取各个关节的舵机状态,通过joint_state消息的方式发送给moveit,供moveit进行路径规划计算。
在前面的博文中ros_arduino_bridge和arduino uno相应的修改都已经介绍过,这里就不在说明,主要的工作就是在driver上
2.控制器配置文件diego_controllers.yaml
根据moveit官方的说明我们需要针对我们机械臂的控制器配置文件,并把其放在moveit assistant产生的配置文件目录的config子目录下,我这里配置文件起名为diego_controllers.yaml
配置文件代码如下:
controller_list: - name: left_arm_controller action_ns: follow_joint_trajectory type: FollowJointTrajectory default: true joints: - left_shoulder_stevo_to_axis - left_shoulder_stevo_lift_to_axis - left_big_arm_up_to_axis - left_small_arm_up_to_axis - left_wrist_run_stevo_to_axis - name: rigth_arm_controller action_ns: follow_joint_trajectory type: FollowJointTrajectory default: true joints: - right_shoulder_stevo_to_axis - right_shoulder_stevo_lift_to_axis - right_big_arm_up_to_axis - right_small_arm_up_to_axis - right_wrist_run_stevo_to_axis - name: right_gripper_controller action_ns: follow_joint_trajectory type: FollowJointTrajectory default: true joints: - right_hand_run_stevo_to_right_hand_run_stevo_axis - name: left_gripper_controller action_ns: follow_joint_trajectory type: FollowJointTrajectory default: true joints: - left_hand_run_stevo_to_left_hand_run_stevo_axis
官方的解释如下
The parameters are:
name: The name of the controller. (See debugging information below for important notes).
action_ns: The action namespace for the controller. (See debugging information below for important notes).
type: The type of action being used (here FollowJointTrajectory).
default: The default controller is the primary controller chosen by MoveIt! for communicating with a particular set of joints.
joints: Names of all the joints that are being addressed by this interface.
通俗点理解/name/action_ns就是对应控制器的ros topic, diego配置文件中对于左臂的ros_topic就是/left_arm_controller/follow_joint_trajectory
type就是我们在drive中要声明的action service类型,在diego的driver中需要提供FollowJointTrajectoryAction接收moveit action client发送来的消息
3.joint.py关节类
from ros_arduino_msgs.srv import * class Joint: ## @brief Constructs a Joint instance. ## ## @param servoNum The servo number. ## ## @param name The joint name. def __init__(self, name, servoNum, range): self.name = name #关节名称 self.servoNum=servoNum #对应的舵机编号 self.range=range #舵机的控制范围,这里是0~180度 self.position = 0.0 self.velocity = 0.0 self.last = rospy.Time.now() ## @brief Set the current position. def setCurrentPosition(self): rospy.wait_for_service('/arduino/servo_write') try: servo_write=rospy.ServiceProxy('/arduino/servo_write',ServoWrite) servo_write(self.servoNum,self.position) except rospy.ServiceException, e: print "Service call failed: %s"%e
4.action server 控制器文件follow_controller.py
follow_controller就是主要的驱动文件
4.1 JointTrajectory msg
驱动的核心其实就是follow_controller对JointTrajectory msg的处理,所以这里先介绍一下JointTrajectory msg,只要理解了JointTrajectory msg,其实驱动还是比较容易的。
在命令执行,如下命令就可以显示了JointTrajectory msg的结构
$ rosmsg show JointTrajectory
可以看到消息的结构体中包含了三部分
a. header
这是Ros的标准消息头这里就不多介绍了
b. joint_names
这是所有关节名称的数组
c.JointTrajectoryPoint
这部分是驱动的关键,这个数组记录了机械臂从一种姿势到另外一种姿势所经过的路径点,moveit所产生的姿势路径是通过这些point点描述出来的,也就是我们驱动中要控制每个关节的舵机都按照这些point点进行运动,每个point又是由一个结构体构成:
positions这是一个float64的数组,记录每个point的时候舵机应该到达的角度,这里是弧度为单位的,比如说是6自由度的那每个Point的这个positions字段中应该包含六个数值[1.57,0,2,0.2,3,0.12],也就是我们舵机控制范围是180度,那这里面的取值范围就是0~π
velocities这个数组记录了每个关节运动的速度
accelerations这个数组记录每个关节运动的加速度
effort这个参数不知道中文应该如何翻译,可以不用
d.time_from_start这个参数是指定从头部的timestamp开始算起多长时间要达到这个点的位置
4.2 follow_controller的初始化代码
初始化代码主要就是初始化joints列表,同时启动action Server
def __init__(self, name): self.name = name # rates self.rate = 20.0 # left Arm jonits list self.left_shoulder_stevo_to_axis=Joint(left_shoulder_stevo_to_axis,6,PI) self.left_shoulder_stevo_lift_to_axis=Joint(left_shoulder_stevo_lift_to_axis,7,PI) self.left_big_arm_up_to_axis=Joint(left_big_arm_up_to_axis,8,PI) self.left_small_arm_up_to_axis=Joint(left_small_arm_up_to_axis,9,PI) self.left_wrist_run_stevo_to_axis=Joint(left_wrist_run_stevo_to_axis,10,PI) self.joints=list() self.joints.append(left_shoulder_stevo_to_axis) self.joints.append(left_shoulder_stevo_lift_to_axis) self.joints.append(left_big_arm_up_to_axis) self.joints.append(left_small_arm_up_to_axis) self.joints.append(left_wrist_run_stevo_to_axis) # left hand joint self.left_hand_run_stevo_to_left_hand_run_stevo_axis=Joint(left_hand_run_stevo_to_left_hand_run_stevo_axis,11,PI) self.joints.append(left_hand_run_stevo_to_left_hand_run_stevo_axis) # right Arm jonits self.right_shoulder_stevo_to_axis=Joint(right_shoulder_stevo_to_axis,0,PI) self.right_shoulder_stevo_lift_to_axis=Joint(right_shoulder_stevo_lift_to_axis,1,PI) self.right_big_arm_up_to_axis=Joint(right_big_arm_up_to_axis,2,PI) self.right_small_arm_up_to_axis=Joint(right_small_arm_up_to_axis,3,PI) self.right_wrist_run_stevo_to_axis=Joint(right_wrist_run_stevo_to_axis,4,PI) self.joints.append(right_shoulder_stevo_to_axis) self.joints.append(right_shoulder_stevo_lift_to_axis) self.joints.append(right_big_arm_up_to_axis) self.joints.append(right_small_arm_up_to_axis) self.joints.append(right_wrist_run_stevo_to_axis) # left hand joint self.right_hand_run_stevo_to_right_hand_run_stevo_axis=Joint(right_hand_run_stevo_to_right_hand_run_stevo_axis,5,PI) self.joints.append(right_hand_run_stevo_to_right_hand_run_stevo_axis) # set the left arm back to the resting position rospy.loginfo("set the left arm back to the resting position") self.left_shoulder_stevo_to_axis.setCurrentPosition(PI/2) self.left_shoulder_stevo_lift_to_axis.setCurrentPosition(PI/2) self.left_big_arm_up_to_axis.setCurrentPosition(PI/2) self.left_small_arm_up_to_axis.setCurrentPosition(PI/2) self.left_wrist_run_stevo_to_axis.setCurrentPosition(PI/2) # set the right arm back to the resting position rospy.loginfo("set the right arm back to the resting position") self.right_shoulder_stevo_to_axis.setCurrentPosition(PI/2) self.right_shoulder_stevo_lift_to_axis.setCurrentPosition(PI/2) self.right_big_arm_up_to_axis.setCurrentPosition(PI/2) self.right_small_arm_up_to_axis.setCurrentPosition(PI/2) self.right_wrist_run_stevo_to_axis.setCurrentPosition(PI/2) # set the left hand back to the resting position rospy.loginfo("set the left hand back to the resting position") self.left_hand_run_stevo_to_left_hand_run_stevo_axis.setCurrentPosition(PI/2) # set the right hand back to the resting position rospy.loginfo("set the right hand back to the resting position") self.right_hand_run_stevo_to_right_hand_run_stevo_axis.setCurrentPosition(PI/2) # action server self.server = actionlib.SimpleActionServer('follow_joint_trajectory', FollowJointTrajectoryAction, execute_cb=self.actionCb, auto_start=True) rospy.loginfo("Started FollowController")
4.3 .actionCb函数
在初始化代码中Action Service的回调函数是actionCb,也就是收到msg后就会调用这个函数,对于节点舵机的控制也就是在这个函数中实现,代码的实现原理见下面的代码注释
def actionCb(self, goal): rospy.loginfo(self.name + ": Action goal recieved.") traj = goal.trajectory if not traj.points:#判断收到的消息是否为空 msg = "Trajectory empy." rospy.logerr(msg) self.server.set_aborted(text=msg) return try: indexes = [traj.joint_names.index(joint.name) for joint in self.joints]#按照joints列表的顺序对traj的数据进行排序,把排序数据放到indexes中 except ValueError as val: msg = "Trajectory invalid." rospy.logerr(msg) self.server.set_aborted(text=msg) return start = traj.header.stamp#当前的时间戳 if start.secs == 0 and start.nsecs == 0: start = rospy.Time.now() r = rospy.Rate(self.rate) for point in traj.points: desired = [ point.positions[k] for k in indexes ]#期望的控制点 for i in indexes self.joints[i].position=desired[i]#控制点对应的舵机的位置 self.joints[i].setCurrentPosition()#发送舵机的控制命令 while rospy.Time.now() + rospy.Duration(0.01) < start:#如果当前时间小于舵机这个点预期完成时间,则等待 rospy.sleep(0.01) rospy.loginfo(self.name + ": Done.")
在此段代码中,忽略了控制速度和加速度的设置,因为我们此机械臂的舵机无法控制舵机的速度和加速度,只要能到达预期控制点就可以了。
未完待续…
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。