当前位置:   article > 正文

Masked Language Modeling -- MLM

masked language modeling

Masked Language Modeling with Code Explaination, MLM及相关代码说明

Knowledge graph 本篇所涉及的知识点

  • BERT concept and theory
  • BERT application
  • MLM: introduction and way to use
  • NLP
  • next sentence prediction (NSP)

Masked language Modeling(MLM)

关于BERT和MLM:

  • BERT可以很方便地用于应用领域;
  • BERT + MLM可以方便应用于特定领域及问题中;

Here I would like to introduce Masked language Modeling(MLM). Before the introduction, there are some basic ideas you need to know about BERT and MLM:

  • BERT is easy to use in a general purpose of use;
  • BERT with MLM can be used in specific areas and domains.

BERT + MLM 的思想在于:
在数据输入BERT训练前,使用MLM遮盖部分数据,然后让BERT填补这部分数据;MLM所遮盖的部分,可以是随机性遮盖一定比例的。

(mask some tokens before training in BERT; let BERT fill the missing part of the text)

使用BERT + MLM的过程

The whole processes:

  • 文本特征化后得到三个张量 tokenize the text, after this, we will get three tensors:
    • input_ids – this is what will be used as input to BERT
    • token_type_ids – not necessary for MLM
    • attention_mask
  • 标签张量label tensors:
    • calculate loss against and optimize towards
    • simply input_ids – 只对这个张量进行操作
  • MLM遮盖数据集 randomly mask some tokens in input_ids
    • 15% of masking the tokens in pre-training model process.
  • 计算损失函数 calculate loss – used for optimization the model
    • input input_ids and labels in BERT
    • do the calculation
from transformers import BertTokenizer, BertForMaskedLM
import torch
  • 1
  • 2
tokenizer = BertTokenizer.from_pretrained(
    声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/703843
    推荐阅读
    相关标签
      

    闽ICP备14008679号