当前位置:   article > 正文

python 线程池内存泄露_Python进/线程池使用

python 线程池 内存泄露

在 Python 中,进程/线程是个非常重要的概念,特别是 Python 还有 GIL(同一时刻只有一个线程在执行 Python bytecode)限制,使得 Python 线程并不那么好用。但 GIL 更多的是影响 CPU 密集型任务,实际业务场景更多的是 IO 密集型任务,多线程还是适用绝大多数场景。不过话又说回来,很多时候不太好判断是 IO 密集型多还是 CPU 密集型多,需要在多进程、多线程环境下分别验证。

但多线程和多进程手写起来还是有点差别,好在 multiprocessing.Pool 提供了统一的接口,可以无缝切换:

1

2

3

4 # 进程池

frommultiprocessingimportPool

# dummy(假)的进程,线程池

frommultiprocessing.dummyimportPoolasThreadPool

下面介绍下 Pool 类如何使用。

首先是构造函数: class multiprocessing.Pool([processes[, initializer[, initargs[, maxtasksperchild]]]])

接收 processes initializer initargs maxtasksperchild 4个参数:

processes,就是池里有多少个进程,可以不传,默认 CPU 个数,可以按需多设置几倍

initializer、initargs,如果设置了参数,则会在每个进程初始化的时候调用 initializer(*initargs)。这个非常有用,比如可以在初始化的时候建立连接,连接重用。

maxtasksperchild,用于设置每个子进程执行多少个任务后重启。虽然很简单粗暴,但这是防止内存溢出、资源未释放等问题的常见手段,类似 PHP-FPM 的 pm.max_requests 参数。线程池无此参数。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 def_send_request(sql):

"""

发送单个请求

:param request:

:return:

"""

# 取出绑定的数据库连接

db_conn=_send_request.db_conn

db_conn.execute(sql)

def_initializer(func):

"""

线程初始化工作

:param func:

:return:

"""

# 绑定建立的数据库连接到请求函数的属性上

func.db_conn=mysql.connector.connect()

pool=ThreadPool(10,initializer=_initializer,initargs=(_send_request))

result=pool.map(func=_send_request,request_list)

pool.close()

pool.join()

这里有一个 hack 技巧,将初始化的数据库连接,绑定在了请求函数上,这样调用请求函数发送请求时,就不用重新建立连接,直接使用即可。

我们一般使用线程池有两个场景,一是关注执行结果,比如我们并行去 redis mysql 各个地方请求数据,然后整合这些数据,二是不关注执行结果,比如新开一个线程打印一个请求的审计日志,不阻塞主进程返回数据。这里主要是介绍下 apply 和 apply_async 的区别,其它的都类似。

apply(func[, args[, kwds]]),主要是传一个执行函数和参数,阻塞并得到返回结果。

apply_async(func[, args[, kwds[, callback]]]),也是主要传执行函数和参数,但返回的是一个 multiprocessing.pool.AsyncResult 对象,AsyncResult 主要有 get([timeout])、wait([timeout])、ready()、successful() 4 个方法,都很好理解,用的比较多的是 get 方法,给定超时时间内获取执行的结果,如果超时抛出 multiprocessing.TimeoutError 异常。如果 timeout 是 None,则一直就等待,行为就和 apply 一致了,实际上 apply 也是调用的 apply_async get:

apply_async 还有一个有用的参数 callback,相对于异步回调了,一般用于上述的场景二。下面是一些示例:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44 #!/usr/bin/env python

# -*- coding: utf-8 -*

frommultiprocessing.dummyimportPool

importtime

callback_start_time=0

deff_sleep(x):

time.sleep(3)

returnx*x

defcallback_func(result):

print'callback result:%s use:%s'%(result,current_time_millis()-callback_start_time)

defcurrent_time_millis():

"""

当前时间戳 ms

:return:

"""

returnint(round(time.time()*1000))

if__name__=='__main__':

pool=Pool(processes=10)

t1=current_time_millis()

result=pool.apply(f_sleep,(10,))

t2=current_time_millis()

print'apply result:%s use:%s'%(result,t2-t1)

result=pool.apply_async(f_sleep,(10,))

t3=current_time_millis()

print'apply_async result:%s use:%s'%(result,t3-t2)

result=result.get(timeout=4)

t4=current_time_millis()

print'apply_async result2:%s use:%s'%(result,t4-t3)

callback_start_time=current_time_millis()

result=pool.apply_async(f_sleep,(10,),callback=callback_func)

time.sleep(4)# 看回调结果

运行结果:

1

2

3

4 applyresult:100use:3001

apply_asyncresult:use:0

apply_asyncresult2:100use:3041

callbackresult:100use:3002

注意代码的最后一行,这里不仅仅是为了看回调结果,还因为回调是回调到主进程执行,如果主进(线)程已经退出了,那就处理不到回调了,实际使用需要注意运行环境。

最后,multiprocessing 模块的 pool 功能只是其中很小的一部分,但比较实用,后面有新的心得再介绍其它功能。

参考资料:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/74853
推荐阅读
相关标签
  

闽ICP备14008679号