赞
踩
前段时间刷短视频看到过别人用摄像头自动化监控员工上班状态,比如标注员工是不是离开了工位,在位置上是不是摸鱼。虽然是段子,但是这个是可以用识别技术实现一下,于是我在网上找,知道发现了 SlowFast,那么下面就用 SlowFast 简单测试一下视频的行为识别。
YOLO 是一个基于深度学习神经网络的对象识别和定位算法,前面我也用 v5s 训练了标注的扑克牌,实现了图片或视频中的点数识别,这里就跳过了。
DeepSORT 是一个实现目标跟踪的算法,其使用卡尔曼滤波器预测所检测对象的运动轨迹。也就是当视频中有多个目标,算法能知道上一帧与下一帧各目标对象的匹配,从而完成平滑锁定,而不是在视频播放或记录时,检测框一闪一闪的。
SlowFast 是一个行为分类模型 (pytorchvideo 内置),可以通过输入视频序列和检测框信息,输出每个检测框的行为类别。所以需要借助类似 YOLO 的多目标检测模型,当然 SlowFast 也可以自行标注数据集训练,来完成自定义的行为识别。
读取视频或者摄像头中的图片
通过 yolo 检测出画面的目标
通过 deep_sort 对目标进行跟踪
通过 slowfast 识别出目标的动作
根据识别的动作进行业务处理等
整个流程下来,除了安装 slowfast 依赖 (pytorchvideo) 外,deep_sort 可以下载 然后 import 到项目中。如果要实时处理摄像头的视频,可以通过采用多线程,单独开一个线程读摄像头并一秒保存一张图,再开一个线程用于处理保存的图片,最后将处理后的结果保存为视频,或者只是做一些业务操作,以下只是一个例子。
- import torch
- import numpy as np
- import os,cv2,time,torch,random,pytorchvideo,warnings,argparse,math
- warnings.filterwarnings("ignore",category=UserWarning)
-
- from pytorchvideo.transforms.functional import (
- uniform_temporal_subsample,
- short_side_scale_with_boxes,
- clip_boxes_to_image,)
- from torchvision.transforms._functional_video import normalize
- from pytorchvideo.data.ava import AvaLabeledVideoFramePaths
- from pytorchvideo.models.hub import slowfast_r50_detection
- from deep_sort.deep_sort import DeepSort
-
- class MyVideoCapture:
-
- def __init__(self, source):
- self.cap = cv2.VideoCapture(source)
- self.idx = -1
- self.end = False
- self.stack = []
-
- def read(self):
- self.idx += 1
- ret, img = self.cap.read()
- if ret:
- self.stack.append(img)
- else:
- self.end = True
- return ret, img
-
- def to_tensor(self, img):
- img = torch.from_numpy(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
- return img.unsqueeze(0)
-
- def get_video_clip(self):
- assert len(self.stack) > 0, "clip length must large than 0 !"
- self.stack = [self.to_tensor(img) for img in self.stack]
- clip = torch.cat(self.stack).permute(-1, 0, 1, 2)
- del self.stack
- self.stack = []
- return clip
-
- def release(self):
- self.cap.release()
-
- def tensor_to_numpy(tensor):
- img = tensor.cpu().numpy().transpose((1, 2, 0))
- return img
-
- def ava_inference_transform(
- clip,
- boxes,
- num_frames = 32, #if using slowfast_r50_detection, change this to 32, 4 for slow
- crop_size = 640,
- data_mean = [0.45, 0.45, 0.45],
- data_std = [0.225, 0.225, 0.225],
- slow_fast_alpha = 4, #if using slowfast_r50_detection, change this to 4, None for slow
- ):
- boxes = np.array(boxes)
- roi_boxes = boxes.copy()
- clip = uniform_temporal_subsample(clip, num_frames)
- clip = clip.float()
- clip = clip / 255.0
- height, width = clip.shape[2], clip.shape[3]
- boxes = clip_boxes_to_image(boxes, height, width)
- clip, boxes = short_side_scale_with_boxes(clip,size=crop_size,boxes=boxes,)
- clip = normalize(clip,
- np.array(data_mean, dtype=np.float32),
- np.array(data_std, dtype=np.float32),)
- boxes = clip_boxes_to_image(boxes, clip.shape[2], clip.shape[3])
- if slow_fast_alpha is not None:
- fast_pathway = clip
- slow_pathway = torch.index_select(clip,1,
- torch.linspace(0, clip.shape[1] - 1, clip.shape[1] // slow_fast_alpha).long())
- clip = [slow_pathway, fast_pathway]
-
- return clip, torch.from_numpy(boxes), roi_boxes
-
- def plot_one_box(x, img, color=[100,100,100], text_info="None",
- velocity=None, thickness=1, fontsize=0.5, fontthickness=1):
- c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
- cv2.rectangle(img, c1, c2, color, thickness, lineType=cv2.LINE_AA)
- t_size = cv2.getTextSize(text_info, cv2.FONT_HERSHEY_TRIPLEX, fontsize , fontthickness+2)[0]
- cv2.rectangle(img, c1, (c1[0] + int(t_size[0]), c1[1] + int(t_size[1]*1.45)), color, -1)
- cv2.putText(img, text_info, (c1[0], c1[1]+t_size[1]+2),
- cv2.FONT_HERSHEY_TRIPLEX, fontsize, [255,255,255], fontthickness)
- return img
-
- def deepsort_update(Tracker, pred, xywh, np_img):
- outputs = Tracker.update(xywh, pred[:,4:5],pred[:,5].tolist(),cv2.cvtColor(np_img,cv2.COLOR_BGR2RGB))
- return outputs
-
- def save_yolopreds_tovideo(yolo_preds, id_to_ava_labels, color_map, output_video, vis=False):
- for i, (im, pred) in enumerate(zip(yolo_preds.ims, yolo_preds.pred)):
- if pred.shape[0]:
- for j, (*box, cls, trackid, vx, vy) in enumerate(pred):
- if int(cls) != 0:
- ava_label = ''
- elif trackid in id_to_ava_labels.keys():
- ava_label = id_to_ava_labels[trackid].split(' ')[0]
- else:
- ava_label = 'Unknow'
- text = '{} {} {}'.format(int(trackid),yolo_preds.names[int(cls)],ava_label)
- color = color_map[int(cls)]
- im = plot_one_box(box,im,color,text)
- im = im.astype(np.uint8)
- output_video.write(im)
- if vis:
- cv2.imshow("demo", im)
-
- def main(config):
- device = config.device
- imsize = config.imsize
-
- # model = torch.hub.load('D:/3code/6pytorch/opencv_demo/05_yolo_v5.6', 'yolov5s', source='local', pretrained=True).to(device)
- model = torch.hub.load('ultralytics/yolov5', 'yolov5l6').to(device)
- model.conf = config.conf
- model.iou = config.iou
- model.max_det = 100
- if config.classes:
- model.classes = config.classes
-
- video_model = slowfast_r50_detection(True).eval().to(device)
-
- deepsort_tracker = DeepSort("deep_sort/deep_sort/deep/checkpoint/ckpt.t7")
- ava_labelnames,_ = AvaLabeledVideoFramePaths.read_label_map("selfutils/temp.pbtxt")
- coco_color_map = [[random.randint(0, 255) for _ in range(3)] for _ in range(80)]
-
- vide_save_path = config.output
- video=cv2.VideoCapture(config.input)
- width,height = int(video.get(3)),int(video.get(4))
- video.release()
- outputvideo = cv2.VideoWriter(vide_save_path,cv2.VideoWriter_fourcc(*'mp4v'), 25, (width,height))
- print("processing...")
-
- cap = MyVideoCapture(config.input)
- id_to_ava_labels = {}
- a=time.time()
- while not cap.end:
- ret, img = cap.read()
- if not ret:
- continue
- yolo_preds=model([img], size=imsize)
- yolo_preds.files=["img.jpg"]
-
- deepsort_outputs=[]
- for j in range(len(yolo_preds.pred)):
- temp=deepsort_update(deepsort_tracker,yolo_preds.pred[j].cpu(),yolo_preds.xywh[j][:,0:4].cpu(),yolo_preds.ims[j])
- if len(temp)==0:
- temp=np.ones((0,8))
- deepsort_outputs.append(temp.astype(np.float32))
-
- yolo_preds.pred=deepsort_outputs
-
- if len(cap.stack) == 25:
- print(f"processing {cap.idx // 25}th second clips")
- clip = cap.get_video_clip()
- if yolo_preds.pred[0].shape[0]:
- inputs, inp_boxes, _=ava_inference_transform(clip, yolo_preds.pred[0][:,0:4], crop_size=imsize)
- inp_boxes = torch.cat([torch.zeros(inp_boxes.shape[0],1), inp_boxes], dim=1)
- if isinstance(inputs, list):
- inputs = [inp.unsqueeze(0).to(device) for inp in inputs]
- else:
- inputs = inputs.unsqueeze(0).to(device)
-
- with torch.no_grad():
- slowfaster_preds = video_model(inputs, inp_boxes.to(device))
- slowfaster_preds = slowfaster_preds.cpu()
- for tid,avalabel in zip(yolo_preds.pred[0][:,5].tolist(), np.argmax(slowfaster_preds, axis=1).tolist()):
- id_to_ava_labels[tid] = ava_labelnames[avalabel+1]
-
- save_yolopreds_tovideo(yolo_preds, id_to_ava_labels, coco_color_map, outputvideo, config.show)
- print("total cost: {:.3f} s, video length: {} s".format(time.time()-a, cap.idx / 25))
-
- cap.release()
- outputvideo.release()
- print('saved video to:', vide_save_path)
-
-
- if __name__=="__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument('--input', type=str, default="/home/wufan/images/video/vad.mp4", help='test imgs folder or video or camera')
- parser.add_argument('--output', type=str, default="output.mp4", help='folder to save result imgs, can not use input folder')
- parser.add_argument('--imsize', type=int, default=640, help='inference size (pixels)')
- parser.add_argument('--conf', type=float, default=0.4, help='object confidence threshold')
- parser.add_argument('--iou', type=float, default=0.4, help='IOU threshold for NMS')
- parser.add_argument('--device', default='cuda', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
- parser.add_argument('--show', action='store_true', help='show img')
- config = parser.parse_args()
-
- if config.input.isdigit():
- print("using local camera.")
- config.input = int(config.input)
-
- print(config)
- main(config)
demo 中用的是网络 yolo,默认下载位置 C:\Users\Administrator/.cache\torch\hub\ultralytics_yolov5_master,而 slowfast 权重文件位置是 C:\Users\Administrator\.cache\torch\hub\checkpoints\SLOWFAST_8x8_R50_DETECTION.pyth。
运行执行命令,出现 AttributeError: ‘Upsample’ object has no attribute 'recompute_scale_factor’错误,根据提示,找到 torch 下的 upsampling.py,将 return F.interpolate (input, self.size, self.scale_factor, self.mode, self.align_corners,
# recompute_scale_factor=self.recompute_scale_factor) 修改为
return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners)。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。