赞
踩
模板转换jinjia2包链接:https://pan.baidu.com/s/1ycb_zf8oS88HF0FvpXrYFg?pwd=ym9n
提取码:ym9n
- import os
- from jinja2 import Environment, PackageLoader
-
-
- class xml_fill:
- def __init__(self, path, width, height, depth=3, database='Unknown', segmented=0):
- environment = Environment(loader=PackageLoader('source', 'XML_template'), keep_trailing_newline=True)
- self.annotation_template = environment.get_template('voc_template.xml')
-
- abspath = os.path.abspath(path)
-
- self.template_parameters = {
- 'path': abspath,
- 'filename': os.path.basename(abspath),
- 'folder': os.path.basename(os.path.dirname(abspath)),
- 'width': width,
- 'height': height,
- 'depth': depth,
- 'database': database,
- 'segmented': segmented,
- 'objects': []
- }
-
- def add_obj_box(self, name, xmin, ymin, xmax, ymax, pose='Unspecified', truncated=0, difficult=0):
- self.template_parameters['objects'].append({
- 'name': name,
- 'xmin': xmin,
- 'ymin': ymin,
- 'xmax': xmax,
- 'ymax': ymax,
- 'pose': pose,
- 'truncated': truncated,
- 'difficult': difficult,
- })
-
- def save_xml(self, annotation_path):
- with open(annotation_path, 'w') as file:
- content = self.annotation_template.render(**self.template_parameters)
- file.write(content)
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
- import json
- import os
- from PIL import Image
- from voc_xml_generator import xml_fill
- tt100k_parent_dir = "G:\\"
-
- def find_image_size(filename):
- with Image.open(filename) as img:
- img_weight = img.size[0]
- img_height = img.size[1]
- img_depth = 3
- return img_weight, img_height, img_depth
-
- def load_mask(annos, datadir, imgid, filler):
- img = annos["imgs"][imgid]
- path = img['path']
- for obj in img['objects']:
- name = obj['category']
- box = obj['bbox']
- xmin = int(box['xmin'])
- ymin = int(box['ymin'])
- xmax = int(box['xmax'])
- ymax = int(box['ymax'])
- filler.add_obj_box(name, xmin, ymin, xmax, ymax)
-
- work_sapce_dir = os.path.join(tt100k_parent_dir, "TT100K\\VOCdevkit\\")
- if not os.path.isdir(work_sapce_dir):
- os.mkdir(work_sapce_dir)
- work_sapce_dir = os.path.join(work_sapce_dir, "VOC20230102\\")
- if not os.path.isdir(work_sapce_dir):
- os.mkdir(work_sapce_dir)
- jpeg_images_path = os.path.join(work_sapce_dir, 'JPEGImages')
- annotations_path = os.path.join(work_sapce_dir, 'Annotations')
- if not os.path.isdir(jpeg_images_path):
- os.mkdir(jpeg_images_path)
- if not os.path.isdir(annotations_path):
- os.mkdir(annotations_path)
-
- datadir = tt100k_parent_dir + "TT100K\\data"
-
- filedir = datadir + "\\annotations.json"
- ids = open(datadir + "\\train\\ids.txt").read().splitlines()
- annos = json.loads(open(filedir).read())
-
-
- for i, value in enumerate(ids):
- imgid = value
- filename = datadir + "\\train\\" + imgid + ".jpg"
- width,height,depth = find_image_size(filename)
- filler = xml_fill(filename, width, height, depth)
- load_mask(annos, datadir, imgid, filler)
- filler.save_xml(annotations_path + '\\' + imgid + '.xml')
- print("%s.xml saved\n"%imgid)
-
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
- import xml.etree.ElementTree as ET
- import os
- import random
- from shutil import move
-
- type45="i2,i4,i5,il100,il60,il80,io,ip,p10,p11,p12,p19,p23,p26,p27,p3,p5,p6,pg,ph4,ph4.5,ph5,pl100,pl120,pl20,pl30,pl40,pl5,pl50,pl60,pl70,pl80,pm20,pm30,pm55,pn,pne,po,pr40,w13,w32,w55,w57,w59,wo"
- type45 = type45.split(',')
- classes = type45
-
- TRAIN_RATIO = 80
-
- def clear_hidden_files(path):
- dir_list = os.listdir(path)
- for i in dir_list:
- abspath = os.path.join(os.path.abspath(path), i)
- if os.path.isfile(abspath):
- if i.startswith("._"):
- os.remove(abspath)
- else:
- clear_hidden_files(abspath)
-
- def convert(size, box):
- dw = 1./size[0]
- dh = 1./size[1]
- x = (box[0] + box[1])/2.0
- y = (box[2] + box[3])/2.0
- w = box[1] - box[0]
- h = box[3] - box[2]
- x = x*dw
- w = w*dw
- y = y*dh
- h = h*dh
- return (x,y,w,h)
-
- def convert_annotation(image_id):
- in_file = open('VOC/2022/ANNOTATIONS/%s.xml' %image_id)
- out_file = open('VOC/2022/YOLOLabels/%s.txt' %image_id, 'w')
- tree=ET.parse(in_file)
- root = tree.getroot()
- size = root.find('size')
- w = int(size.find('width').text)
- h = int(size.find('height').text)
-
- for obj in root.iter('object'):
- difficult = obj.find('difficult').text
- cls = obj.find('name').text
- if cls not in classes or int(difficult) == 1:
- continue
- cls_id = classes.index(cls)
- xmlbox = obj.find('bndbox')
- b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
- bb = convert((w,h), b)
- out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
- in_file.close()
- out_file.close()
-
- wd = os.getcwd()
- wd = os.getcwd()
- data_base_dir = os.path.join(wd, "VOC/")
- if not os.path.isdir(data_base_dir):
- os.mkdir(data_base_dir)
- work_sapce_dir = os.path.join(data_base_dir, "2022/")
- if not os.path.isdir(work_sapce_dir):
- os.mkdir(work_sapce_dir)
- annotation_dir = os.path.join(work_sapce_dir, "ANNOTATIONS/")
- if not os.path.isdir(annotation_dir):
- os.mkdir(annotation_dir)
- clear_hidden_files(annotation_dir)
- image_dir = os.path.join(work_sapce_dir, "IMAGE/")
- if not os.path.isdir(image_dir):
- os.mkdir(image_dir)
- clear_hidden_files(image_dir)
- yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
- if not os.path.isdir(yolo_labels_dir):
- os.mkdir(yolo_labels_dir)
- clear_hidden_files(yolo_labels_dir)
- yolov5_images_dir = os.path.join(data_base_dir, "images/")
- if not os.path.isdir(yolov5_images_dir):
- os.mkdir(yolov5_images_dir)
- clear_hidden_files(yolov5_images_dir)
- yolov5_labels_dir = os.path.join(data_base_dir, "labels/")
- if not os.path.isdir(yolov5_labels_dir):
- os.mkdir(yolov5_labels_dir)
- clear_hidden_files(yolov5_labels_dir)
- yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/")
- if not os.path.isdir(yolov5_images_train_dir):
- os.mkdir(yolov5_images_train_dir)
- clear_hidden_files(yolov5_images_train_dir)
- yolov5_images_test_dir = os.path.join(yolov5_images_dir, "val/")
- if not os.path.isdir(yolov5_images_test_dir):
- os.mkdir(yolov5_images_test_dir)
- clear_hidden_files(yolov5_images_test_dir)
- yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/")
- if not os.path.isdir(yolov5_labels_train_dir):
- os.mkdir(yolov5_labels_train_dir)
- clear_hidden_files(yolov5_labels_train_dir)
- yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "val/")
- if not os.path.isdir(yolov5_labels_test_dir):
- os.mkdir(yolov5_labels_test_dir)
- clear_hidden_files(yolov5_labels_test_dir)
-
- train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w')
- test_file = open(os.path.join(wd, "yolov5_val.txt"), 'w')
- train_file.close()
- test_file.close()
- train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a')
- test_file = open(os.path.join(wd, "yolov5_val.txt"), 'a')
- list_imgs = os.listdir(image_dir) # list image files
- prob = random.randint(1, 100)
- for i in range(0,len(list_imgs)):
- path = os.path.join(image_dir,list_imgs[i])
- if os.path.isfile(path):
- image_path = image_dir + list_imgs[i]
- voc_path = list_imgs[i]
- (nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
- (voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
- annotation_name = nameWithoutExtention + '.xml'
- annotation_path = os.path.join(annotation_dir, annotation_name)
- label_name = nameWithoutExtention + '.txt'
- label_path = os.path.join(yolo_labels_dir, label_name)
- prob = random.randint(1, 100)
- if(prob < TRAIN_RATIO): # train dataset
- if os.path.exists(annotation_path):
- train_file.write(image_path + '\n')
- convert_annotation(nameWithoutExtention) # convert label
- move(image_path, yolov5_images_train_dir + voc_path)
- move(label_path, yolov5_labels_train_dir + label_name)
- else: # test dataset
- if os.path.exists(annotation_path):
- test_file.write(image_path + '\n')
- convert_annotation(nameWithoutExtention) # convert label
- move(image_path, yolov5_images_test_dir + voc_path)
- move(label_path, yolov5_labels_test_dir + label_name)
- train_file.close()
- test_file.close()
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
- class LoadImgLabels(Dataset):
- # root = "YOLO/VOC"
- def __init__(self,root,mode):
- super(LoadImgLabels, self).__init__()
- self.root = root
- self.mode = mode
-
- img_path = get_path(os.path.join(root,'images',self.mode))
- lab_path = get_path(os.path.join(root,'labels',self.mode))
- self.img_files = get_file(img_path)
- self.label_files = img2label_paths(self.img_files)
-
-
- def __len__(self):
- return len()
-
- def __getitem__(self, item):
- return
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
# 获得(不同操作系统)标准路径
- def get_path(path):
- p = str(Path(path))
- return p
# 得到路径下的每个文件
- def get_file(path):
- file = []
- if os.path.isdir(path):
- file += glob.iglob(path + os.sep + '*.*')
- return file
# 由图片的文件得到对应标签的文件
- def img2label_paths(img_paths):
- sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep
- return [x.replace(sa, sb, 1).replace(os.path.splitext(x)[-1], '.txt') for x in img_paths]
# 缓存标签
- def cache_labels(img_files, label_files, path='labels.cache'):
- x = {}
- pbar = tqdm(zip(img_files, label_files), desc='Scanning images', total=len(img_files))
- for (img, label) in pbar:
- print(img,label)
- try:
- l=[]
- im = Image.open(img)
- im.verify()
- shape = im.size
- if os.path.isfile(label):
- with open(label,'r') as f:
- l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
- if len(l) == 0:
- l = np.zeros((0, 5), dtype=np.float32)
- x[img] = [l,shape]
- except:
- pass
- torch.save(x, path)
- return x
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
- class LoadImgLabels(Dataset):
- # root = "../VOC"
- def __init__(self,root,mode,img_size):
- super(LoadImgLabels, self).__init__()
- self.root = root
- self.mode = mode
- self.img_size = img_size # 输入图片分辨率大小
-
- img_path = get_path(os.path.join(root,'images',self.mode))
-
- if os.path.isfile('labels.cache'):
- print("读取缓存标签文件'labels.cache'")
- cache = torch.load('labels.cache')
- else:
- print("生成缓存标签文件'labels.cache'")
- self.img_files = get_file(img_path)
- self.label_files = img2label_paths(self.img_files)
- cache = cache_labels(self.img_files, self.label_files)
-
- labels, shapes = zip(*cache.values())
- self.labels = list(labels)
- self.shapes = np.array(shapes, dtype=np.float64)
- self.img_files = list(cache.keys())
- self.label_files = img2label_paths(cache.keys())
-
-
- def __len__(self):
- return len(self.img_files)
-
- def __getitem__(self, index):
-
- return 0
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
并根据设定的输入大小与图片原大小的比例ratio进行resize;
if img_size = 640:(1080, 1920)———>(360, 640)
- def load_image(img_files, img_size , index): # img_size = 640
- path = img_files[index]
- img = cv2.imread(path)
- h0 ,w0 = img.shape[:2]
- r = img_size / max(h0,w0)
- if r != 1:
- interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
- img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
- return img, (h0, w0), img.shape[:2] # (1080, 1920)———>(360, 640)
# 图像缩放: 保持图片的宽高比例,剩下的部分采用灰色填充。
- def Make_squqre(img, new_shape=(640, 640), color=(114, 114, 114)):
- # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
- shape = img.shape[:2] # 当前图片大小
- if isinstance(new_shape, int):
- new_shape = (new_shape, new_shape)
-
- # ----------------计算填充大小-----------------------------------------
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])# r = 1.0
- ratio = r, r # ratio = (1.0,1.0)
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # 填充宽度,高度
- # 计算上下左右填充大小
- dw /= 2
- dh /= 2
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
- # ------------------进行填充-------------------------------------------
- img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
- return img, ratio, (dw, dh)
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
- labels = []
- x = self.labels[index]
- if x.size > 0:
- # 根据pad调整框的标签坐标:注意label是真实位置,没有归一化的
- labels = x.copy()
- labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0]
- labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1]
- labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
- labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
- nL = len(labels)
- if nL:
- labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])
- # 重新归一化标签0 - 1
- labels[:, [2, 4]] /= img.shape[0] # normalized height 0~1
- labels[:, [1, 3]] /= img.shape[1] # normalized width 0~1
- labels_out = torch.zeros((nL, 6))
- if nL:
- labels_out[:, 1:] = torch.from_numpy(labels)
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
# 左上角右下角坐标格式转换成中心点+宽高坐标格式
- def xyxy2xywh(x):
- # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
- y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
- y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
- y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
- y[:, 2] = x[:, 2] - x[:, 0] # width
- y[:, 3] = x[:, 3] - x[:, 1] # height
- return y
- import torch
- from contextlib import contextmanager
- from tqdm import tqdm
-
- from YOLO.dataset.dataset import LoadImgLabels
-
-
-
-
-
- # 定义生成器 _RepeatSampler
- class _RepeatSampler(object):
- def __init__(self, sampler):
- self.sampler = sampler
-
- def __iter__(self):
- while True:
- yield from iter(self.sampler)
- # 定义DataLoader(一个python生成器)
- class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
- self.iterator = super().__iter__()
-
- def __len__(self):
- return len(self.batch_sampler.sampler)
-
- def __iter__(self): # 实现了__iter__方法的对象是可迭代的
- for i in range(len(self)):
- yield next(self.iterator)
- @contextmanager
- def torch_distributed_zero_first(local_rank: int):""
- if local_rank not in [-1, 0]:
- torch.distributed.barrier() # Synchronizes all processes
- yield
- if local_rank == 0:
- torch.distributed.barrier()
-
-
-
- # 利用自定义的数据集(LoadImagesAndLabels)创建dataloader
- def create_dataloader(path, mode , imgsz, batch_size,rank=-1):
- with torch_distributed_zero_first(rank):
- dataset = LoadImgLabels(path, mode, imgsz)
-
- batch_size = min(batch_size, len(dataset))
- dataloader = InfiniteDataLoader(dataset,# torch.utils.data.DataLoader
- batch_size=batch_size,
- shuffle=True,
- collate_fn=LoadImgLabels.collate_fn,
- pin_memory=True)
- return dataloader, dataset
-
- dataloader, dataset = create_dataloader("G:\VOC", 'train',640, 2)
-
- pbar = enumerate(dataloader)
- nb = len(dataloader)
- pbar = tqdm(pbar, total=nb)
-
- for i, (imgs, targets, path) in pbar:
- ni = i + nb * 1
- imgs = imgs / 255.0
- print(imgs.size(),targets.size())
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。