赞
踩
前篇参考:https://blog.csdn.net/qq_34717531/article/details/107818606
- # -*- coding: utf-8 -*-
- from flask import Flask, request, jsonify
- import cv2
- import numpy as np
- import os
- import time
- import json
-
- '''
- pathIn:原始图片的路径
- pathOut:结果图片的路径
- label_path:类别标签文件的路径
- config_path:模型配置文件的路径
- weights_path:模型权重文件的路径
- confidence_thre:0-1,置信度(概率/打分)阈值,即保留概率大于这个值的边界框,默认为0.5
- nms_thre:非极大值抑制的阈值,默认为0.3
- '''
- def yolo_detect(im=None,
- pathIn=None,
- label_path='./cfg/coco.names',
- config_path='./cfg/yolov4-tiny.cfg',
- weights_path='./cfg/yolov4-tiny.weights',
- confidence_thre=0.5,
- nms_thre=0.3):
-
- #加载类别标签文件
- LABELS = open(label_path).read().strip().split("\n")
- nclass = len(LABELS)
-
- # 为每个类别的边界框随机匹配相应颜色
- np.random.seed(42)
- COLORS = np.random.randint(0, 255, size=(nclass, 3), dtype='uint8')
- if pathIn == None:
- img = im
- else:
- img = cv2.imread(pathIn)
- # print(pathIn)
-
- # 载入图片并获取其维度
- filename = pathIn.split('/')[-1]
- name = filename.split('.')[0]
- (H, W) = img.shape[:2]
-
- # 加载模型配置和权重文件
- net = cv2.dnn.readNetFromDarknet(config_path, weights_path)
-
- # 获取YOLO输出层的名字
- ln = net.getLayerNames()
- ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
-
- # 将图片构建成一个blob,设置图片尺寸,然后执行一次
- # YOLO前馈网络计算,最终获取边界框和相应概率
- blob = cv2.dnn.blobFromImage(img, 1 / 255.0, (416, 416), swapRB=True, crop=False)
- net.setInput(blob)
- start = time.time()
- layerOutputs = net.forward(ln)
- end = time.time()
-
- # 初始化边界框,置信度(概率)以及类别
- boxes = []
- confidences = []
- classIDs = []
-
- # 迭代每个输出层,总共三个
- for output in layerOutputs:
-
- # 迭代每个检测
- for detection in output:
-
- # 提取类别ID和置信度
- scores = detection[5:]
- classID = np.argmax(scores)
- confidence = scores[classID]
-
- # 只保留置信度大于某值的边界框
- if confidence > confidence_thre:
-
- # 将边界框的坐标还原至与原图片相匹配,记住YOLO返回的是
- # 边界框的中心坐标以及边界框的宽度和高度
- box = detection[0:4] * np.array([W, H, W, H])
- (centerX, centerY, width, height) = box.astype("int")
-
- # 计算边界框的左上角位置
- x = int(centerX - (width / 2))
- y = int(centerY - (height / 2))
-
- # 更新边界框,置信度(概率)以及类别
- boxes.append([x, y, int(width), int(height)])
- confidences.append(float(confidence))
- classIDs.append(classID)
-
- # 使用非极大值抑制方法抑制弱、重叠边界框
- idxs = cv2.dnn.NMSBoxes(boxes, confidences, confidence_thre, nms_thre)
- lab = []
- loc = []
- data={}
- data["filename"]=filename
- data["counts"]=len(idxs)
-
- # 确保至少一个边界框
- if len(idxs) > 0:
- # 迭代每个边界框
- for i in idxs.flatten():
- # 提取边界框的坐标
- (x, y) = (boxes[i][0], boxes[i][1])
- (w, h) = (boxes[i][2], boxes[i][3])
-
- # 绘制边界框以及在左上角添加类别标签和置信度
- color = [int(c) for c in COLORS[classIDs[i]]]
- cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
- text = '{}: {:.3f}'.format(LABELS[classIDs[i]], confidences[i])
- (text_w, text_h), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2)
- cv2.rectangle(img, (x, y-text_h-baseline), (x + text_w, y), color, -1)
- cv2.putText(img, text, (x, y-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)
- text_inf = text + ' ' + '(' + str(x) + ',' + str(y) + ')' + ' ' + '宽:' + str(w) + '高:' + str(h)
- info = {"label":LABELS[classIDs[i]],"confidences":confidences[i],"x":str(x),"y":str(y),"w":str(w),"h":str(h)}
-
- data["data"+str(i)]=info
- # print(filename,LABELS[classIDs[i]],confidences[i],str(x),str(y),str(w),str(h))
- loc.append([x, y, w, h])
- lab.append(text_inf)
- res = jsonify(data)
- return lab, img, loc, res
-
- # if __name__ == '__main__':
- # pathIn = './static/images/test1.jpg'
- # im = cv2.imread('./static/images/test2.jpg')
- # lab, img, loc = yolo_detect(pathIn=pathIn)
- # print(lab)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。