赞
踩
每个矩阵的大小都是 5x5,假设这些矩阵代表一幅图像的三个不同通道。为简单起见,我们将这三个矩阵分别称为 A、B 和 C。合成图像将是一个三通道图像,每个通道由其中一个矩阵表示。
A = [[a11, a12, a13, a14, a15], [a21, a22, a23, a24, a25], [a31, a32, a33, a34, a35], [a41, a42, a43, a44, a45], [a51, a52, a53, a54, a55]] B = [[b11, b12, b13, b14, b15], [b21, b22, b23, b24, b25], [b31, b32, b33, b34, b35], [b41, b42, b43, b44, b45], [b51, b52, b53, b54, b55]] C = [[c11, c12, c13, c14, c15], [c21, c22, c23, c24, c25], [c31, c32, c33, c34, c35], [c41, c42, c43, c44, c45], [c51, c52, c53, c54, c55]]
现在,全局平均池操作将独立应用于每个通道。对于每个通道,它会计算该通道中所有元素的平均值。计算结果是一个向量,每个通道只有一个值。
- avg_A = (a11 + a12 + ... + a55) / 25
- avg_B = (b11 + b12 + ... + b55) / 25
- avg_C = (c11 + c12 + ... + c55) / 25
这样,经过全局平均汇集后的合成图像将是一个 3 通道图像,每个通道由其原始矩阵的平均值表示:
Composite Image = [[avg_A, avg_B, avg_C]]
- import torch
- import torch.nn as nn
-
- # Generate a random 3-channel matrix with integer values for a batch of size 2
- torch.manual_seed(42) # Setting seed for reproducibility
- batch_size = 1
- image_matrix = torch.randint(0, 10, (batch_size, 3, 5, 5), dtype=torch.float32) # Batch size 2, 3 channels, 5x5 matrix
-
- # Display the original matrix
- print("Original Matrix:")
- print(image_matrix)
-
- # Apply global average pooling using nn.AdaptiveAvgPool2d
- adaptive_avg_pool = nn.AdaptiveAvgPool2d(1)
- global_avg_pooled = adaptive_avg_pool(image_matrix)
-
- # Display the result after global average pooling
- print("\nResult after Global Average Pooling:")
- print(global_avg_pooled)
- Original Matrix:
- tensor([[[[2., 7., 6., 4., 6.],
- [5., 0., 4., 0., 3.],
- [8., 4., 0., 4., 1.],
- [2., 5., 5., 7., 6.],
- [9., 6., 3., 1., 9.]],
-
- [[3., 1., 9., 7., 9.],
- [2., 0., 5., 9., 3.],
- [4., 9., 6., 2., 0.],
- [6., 2., 7., 9., 7.],
- [3., 3., 4., 3., 7.]],
-
- [[0., 9., 0., 9., 6.],
- [9., 5., 4., 8., 8.],
- [6., 0., 0., 0., 0.],
- [1., 3., 0., 1., 1.],
- [7., 9., 4., 3., 8.]]]])
-
- Result after Global Average Pooling:
- tensor([[[[4.2800]],
-
- [[4.8000]],
-
- [[4.0400]]]])
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。