当前位置:   article > 正文

命名实体识别实践(LSTM+CRF)_命名实体识别 lstm crf

命名实体识别 lstm crf
任务场景

实体识别是一个经典的序列标注任务,如果有一批已经标注的样本,就可以考虑使用模型来进行训练了,传统的方式是用CRF++进行训练随着深度学习技术的兴起,任务也基本围绕着基础的LSTM+CRF的基础上或者进行微调。本文中实现了其基础版本。


    def buildd_model(self):
        """NER 模型建立"""
        inpute_ = layers.Input((self.max_sentence_len,))
        embed  =  layers.Embedding(input_dim=self.word_num, output_dim=200,mask_zero=True)(inpute_)

        lstm_encode = layers.Bidirectional(layers.LSTM(units=100, return_sequences=True,
                                                       dropout=0.3, recurrent_dropout=0.05))(embed)
        dense1 = layers.TimeDistributed(layers.Dense(50,activation="tanh"))(lstm_encode)
        dense1 = layers.Dropout(0.05)(dense1)
        # dense1 = layers.Dense(units=64,activation="tanh")(dense1)
        crf = CRF(self.class_num, sparse_target=False)
       
        crf_res = crf(dense1)
        model = Model(inpute_, crf_res)
        adam = Adam(lr=0.001)
        model.compile(optimizer=adam, loss=crf.loss_function, metrics=[crf.accuracy])
        print(model.summary())
        return model

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

效果:
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/961344
推荐阅读
相关标签
  

闽ICP备14008679号