当前位置:   article > 正文

Yolopose关键点检测:自己标注数据集,制作数据集(二)_关键点检测数据集

关键点检测数据集

前言

继Yolopose关键点检测:自己标注数据集,制作数据集(一)后,完成了labelme下的JSON转coco格式的JSON,接下来需要介绍如何将coco格式的JSON文件转换成 yolo的txt文件,以及coco_kpts文件夹的内容布局。


一、coco2yolo.py

通过edgeai-yolov5-yolo-pose工程下的README.md可知,官方已经给了labels格式及coco_kpts文件夹的布局,下载labels文件后,随便找了一个txt查看,内容如下:

在这里插入图片描述

0代表的numclass,后面4个数代表bbox的四个值,有小数是因为通过图片的宽和高进行了归一化,后面就是关键点x,y,v为一组,x,y同样进行了归一化,v为2前一篇博文讲过,按照这个格式并修改出了以下的转换代码:

# COCO 格式的数据集转化为 YOLO 格式的数据集
# --json_path 输入的json文件路径
# --save_path 保存的文件夹名字,默认为当前目录下的labels。

import os
import json
from tqdm import tqdm
import argparse

parser = argparse.ArgumentParser()
# 这里根据自己的json文件位置,换成自己的就行
parser.add_argument('--json_path',
                    default=r'E:\val2017\annotations\val.json', type=str,
                    help="input: coco format(json)")
# 这里设置.txt文件保存位置
parser.add_argument('--save_path', default=r'E:\val2017\annotations', type=str,
                    help="specify where to save the output dir of labels")
arg = parser.parse_args()


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = box[0] + box[2] / 2.0
    y = box[1] + box[3] / 2.0
    w = box[2]
    h = box[3]

    x = round(x * dw, 6)
    w = round(w * dw, 6)
    y = round(y * dh, 6)
    h = round(h * dh, 6)
    return (x, y, w, h)


if __name__ == '__main__':
    json_file = arg.json_path  # COCO Object Instance 类型的标注
    ana_txt_save_path = arg.save_path  # 保存的路径

    data = json.load(open(json_file, 'r'))
    if not os.path.exists(ana_txt_save_path):
        os.makedirs(ana_txt_save_path)

    id_map = {}  # coco数据集的id不连续!重新映射一下再输出!
    with open(os.path.join(ana_txt_save_path, 'classes.txt'), 'w') as f:
        # 写入classes.txt
        for i, category in enumerate(data['categories']):
            f.write(f"{category['name']}\n")
            id_map[category['id']] = i
    # print(id_map)
    # 这里需要根据自己的需要,更改写入图像相对路径的文件位置。
    list_file = open(os.path.join(ana_txt_save_path, 'train2017.txt'), 'w')
    for img in tqdm(data['images']):
        filename = img["file_name"]
        img_width = img["width"]
        img_height = img["height"]
        img_id = img["id"]
        head, tail = os.path.splitext(filename)
        ana_txt_name = head + ".txt"  # 对应的txt名字,与jpg一致
        f_txt = open(os.path.join(ana_txt_save_path, ana_txt_name), 'w')
        for ann in data['annotations']:
            if ann['image_id'] == img_id:
                box = convert((img_width, img_height), ann["bbox"])
                f_txt.write("%s %s %s %s %s" % (id_map[ann["category_id"]], box[0], box[1], box[2], box[3]))
                counter=0
                for i in range(len(ann["keypoints"])):
                    if ann["keypoints"][i] == 2 or ann["keypoints"][i] == 1 or ann["keypoints"][i] == 0:
                        f_txt.write(" %s " % format(ann["keypoints"][i],'6f'))
                        counter=0
                    else:
                        if counter==0:
                            f_txt.write(" %s " % round((ann["keypoints"][i] / img_width),6))
                        else:
                            f_txt.write(" %s " % round((ann["keypoints"][i] / img_height),6))
                        counter+=1
        f_txt.write("\n")
        f_txt.close()
        # 将图片的路径写入train2017或val2017的路径
        list_file.write('E:/edgeai-yolov5-yolo-pose/coco_kpts/images/train2017/%s.jpg\n' % (head))
    list_file.close()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80

执行后会在E:\val2017\annotations文件夹下得到以下几个txt文件

在这里插入图片描述
trian2017.txt 内容为原图片的绝对路径
classes.txt 内容为person
而000000000001.txt的内容如下,和官方给的labels的内容格式一模一样

在这里插入图片描述

这是之前提到的官方内容格式
在这里插入图片描述
至此,coco格式的JSON文件转换成yolo的txt文件就完成了。

二、coco_kpts文件夹下的内容布局

README.md内容中给的格式如下图所示:

在这里插入图片描述
在这里插入图片描述

(.cache文件是训练的时候系统自动生成的,不用管)
1.images文件夹存放所有的图片:

在这里插入图片描述

2.labels文件夹存放trian2017、val2017、test2017,这些文件夹放已经转换好的txt文件如下图所示:
在这里插入图片描述
在这里插入图片描述

3.annotations文件夹存放3个coco格式的JSON文件,如下图所示,例如我这次案例train放了3张照片,val放了一张照片,test放了一张照片,那我train的coco格式JSON文件里面就应该包含3张图片的关键点及人物框的信息(个人尝试了一下这些JSON文件取其他文件名也不影响程序的运行,甚至可以没有!!!)。

在这里插入图片描述

4.train2017.txt、val2017.txt、test-dev2017.txt里面存放的是图片的绝对路径,这在转换代码里面是可以进行修改的,如下图所示:

在这里插入图片描述
coco_kpts文件夹的内容讲解就介绍完成了。


总结

试着跑了一下,其他的报错提示在CSDN上都能找到解决方法,训练的时候记得改一下coco_kpts.yaml文件里面的内容,记得换成你自己的路径。
train: E:/edgeai-yolov5-yolo-pose/coco_kpts/train2017.txt
val: E:/edgeai-yolov5-yolo-pose/coco_kpts/val2017.txt
test: E:/edgeai-yolov5-yolo-pose/coco_kpts/test-dev2017.txt
最后在输出权值文件的文件夹下可以看到验证的图片如下图所示:

在这里插入图片描述

个人数据集的标注及制作到此结束,有疑问的同学欢迎留言,相互交流、学习,谢谢!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/97830
推荐阅读
相关标签
  

闽ICP备14008679号