当前位置:   article > 正文

目标检测中的b-box回归损失函数(IOU,GIOU,DIOU,CIOU)_ciou全称

ciou全称

目标检测作为一种经典CV任务,大致可以认为是三个子任务的集合:1. 确定目标大概位置;2. 分类出目标类别;3. 回归出检测框的宽高;

这三种子任务分别需要对应损失函数的反传来学习。今天介绍的b-box回归损失函数主要是面向第三个子任务而设计的损失函数。


1. IOU

全称Intersection-Over-Union,即交并比。计算预测框和标注框(即GT框)的交并比,就可以知道它们的“贴合程度”好不好,作为调整模型的指导

原文链接:[1608.01471] UnitBox: An Advanced Object Detection Network (arxiv.org)

指两个b-box之间交集部分的面积比并集的面积:

IOU = 绿色面积/(蓝色面积+绿色面积+橙色面积)

而IOU loss可以简单表示为:LIOU=1IOU

一个简单的python实现:https://blog.csdn.net/leviopku/article/details/81629492 

2. GIOU

IOU虽然简单,但有一些明显的缺点:1,当两个框没有任何交集时,IOU为0,IOU loss会一直为1。无法反应出检测框与GT框之间的距离,从而导致:只要两个框没有交集,IOU loss就恒等于1,则无论朝哪个方向优化,IOU loss都不会下降,此时的IOU loss失去了指导性。2. 很多场景下,IOU并不能反应两个b-box之间的贴合度。GIOU就是在IOU的基础上做了一些改进.

链接:[1902.09630] Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression (arxiv.org)

发表于:CVPR2019

算法描述为:

看图更容易懂:

在IOU的基础上找到一个“全局框”C,这个全局框能够刚好把两个b-box装进去。这样对多一部分面积C_

根据上图表示:GIOU = IOU - C_/C

GIOU loss可以简单表示为:LGIOU=1GIOU

即:LGIOU=1IOU+C¯/C

在两个b-box没有交集的情况下:

可以看到GIOU会随两个框之间的距离变化而变化,从而反应到loss上,从而指导预测框的移动方向

3. DIOU

链接:[1911.08287] Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression (arxiv.org)

发表于:AAAI2020

在GIOU的基础上进一步强调了距离的重要性。直接算出一个中心点的距离相对于框规模的一个比值。咱们先看公式:

跟GIOU loss相比只是替换了最后一项。这一项是怎么算的呢?看图:

跟GIOU一样,DIOU还是需要找到最小包围框C(注意大小写),然后c作为C的对角线长度。图中的d表示,两个b-box中间点连线的长度。

则,最后这一项可以解读为:中心连线的长度d与最小包围框C对角线长度c的比值的平方这里为啥加个平方呢?答:咱们算距离或长度的时候需要开根号,这里加平方其实是减少开根号的运算步骤。

4. CIOU

链接:[2005.03572] Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation (arxiv.org)

CIOU的全称是:Complete-IOU。CIOU就稍微有些复杂了。

看公式:

我们发现,这就是DIOU加了最后一项而已,即调整长宽比的loss项。咱们只需要了解αV即可了解CIOU,先看V,即Consistency of Aspect Ratio:

假设预测框和GT框的宽长比不一致,则V会很大。再看一个trade-off参数α:

α可以看出,当IOU小于0.5的时候,CIOU就变成DIOU。IOU越大,α就越接近1。

那么,在IOU很大的情况下,变为0(中心点重合),这个时候需要调节长宽比了。DIOU在这个时候,loss的梯度也变小了(只靠IOU loss的部分在传递梯度),而CIOU可以依靠最后一项继续保持loss的梯度,使得检测器能够迅速调整好自己与GT框拥有一样的宽长比。

辅以一张对比图来说明:

第一排是GIOU,第二排是CIOU,原点处的绿色框是GT框,黑色框是anchor框,红色框是预测框。可以看到,在预测框和GT框没有交集(即IOU=0)的情况下,GIOU和CIOU都有指导检测框移动的能力。此时,GIOU从位置、宽长比、size等角度调整预测框,而CIOU是迅速拉回位置(不怎么动预测框的形状),因此CIOU可以比GIOU更快拉回预测框使其IOU>0。等IOU>0以后,CIOU迅速调整size规模。等IOU>0.5以后,CIOU的宽长比(也叫纵横比)部分开始作为梯度传播的主要部分,使得预测框和GT框有用一样的宽长比。

文章本人原创,有问题欢迎留言交流~

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/114179
推荐阅读
相关标签
  

闽ICP备14008679号