赞
踩
Kmeans聚类算法实现(输出聚类过程,分布图展示)
Kmeans聚类算法是聚类算法中最基础最常用的聚类算法,算法很简单,主要是将距离最近的点聚到一起,不断遍历点与簇中心的距离,并不断修正簇中心的位置与簇中的点集合,通过最近距离和遍历次数来控制输出最终的结果。初始的簇中心、遍历次数、最小距离会影响最终的结果。具体的聚类算法过程不详细讲解,网上资料很多,本文主要是java语言实现,1000个点(本文是二维向量,也可以是多维,实现原理和程序一样),程序运行过程中会输出每一次遍历点的簇中心,和簇中包含的点,并将最终结果通过插件在html中显示。
一、Kmeans聚类算法实现步骤
1、将本地文件读取到点集合中:
2、从点集合中随机选取K个簇中心(也可以采取其他方法获取,后续讲解,初始簇中心的选择会影响最终聚类结果):
3、Kmeans聚类。Kmeans聚类的实现主要是通过遍历所有点与簇中心的距离,不断更换簇中心并将点存入距离最近的簇中,距离的计算公式有多种,常用的是欧几里得距离算法。
二、Kmeans聚类算法实现结果
1、运算过程:
2、分布图:
需要源代码的朋友可联系留言。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。