当前位置:   article > 正文

Python+Yolov5跌倒检测 摔倒检测 人物目标行为 人体特征识别

yolov5跌倒检测

Python+Yolov5跌倒检测 摔倒检测 人物目标行为 人体特征识别

如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助!

前言

这篇博客针对<<Python+Yolov5跌倒摔倒人体特征识别>>编写代码,代码整洁,规则,易读。 学习与应用推荐首选。

文章目录

一、所需工具软件

二、使用步骤

1. 引入库

2. 识别图像特征

3. 参数设置

4. 运行结果

三、在线协助

一、所需工具软件

1. Pycharm, Python

2. Qt, OpenCV

二、使用步骤

1.引入库

代码如下(示例):

  1. import cv2
  2. import torch
  3. from numpy import random
  4. from models.experimental import attempt_load
  5. from utils.datasets import LoadStreams, LoadImages
  6. from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
  7. scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
  8. from utils.plots import plot_one_box
  9. from utils.torch_utils import select_device, load_classifier, time_synchronized

2.识别图像特征

代码如下(示例):

  1. defdetect(save_img=False):
  2. source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
  3. webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
  4. ('rtsp://', 'rtmp://', 'http://'))
  5. # Directories
  6. save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
  7. (save_dir / 'labels'if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir# Initialize
  8. set_logging()
  9. device = select_device(opt.device)
  10. half = device.type != 'cpu'# half precision only supported on CUDA# Load model
  11. model = attempt_load(weights, map_location=device) # load FP32 model
  12. stride = int(model.stride.max()) # model stride
  13. imgsz = check_img_size(imgsz, s=stride) # check img_sizeif half:
  14. model.half() # to FP16# Second-stage classifier
  15. classify = Falseif classify:
  16. modelc = load_classifier(name='resnet101', n=2) # initialize
  17. modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
  18. # Set Dataloader
  19. vid_path, vid_writer = None, Noneif webcam:
  20. view_img = check_imshow()
  21. cudnn.benchmark = True# set True to speed up constant image size inference
  22. dataset = LoadStreams(source, img_size=imgsz, stride=stride)
  23. else:
  24. save_img = True
  25. dataset = LoadImages(source, img_size=imgsz, stride=stride)
  26. # Get names and colors
  27. names = model.module.names ifhasattr(model, 'module') else model.names
  28. colors = [[random.randint(0, 255) for _ inrange(3)] for _ in names]
  29. # Run inferenceif device.type != 'cpu':
  30. model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
  31. t0 = time.time()
  32. for path, img, im0s, vid_cap in dataset:
  33. img = torch.from_numpy(img).to(device)
  34. img = img.half() if half else img.float() # uint8 to fp16/32
  35. img /= 255.0# 0 - 255 to 0.0 - 1.0if img.ndimension() == 3:
  36. img = img.unsqueeze(0)
  37. # Inference
  38. t1 = time_synchronized()
  39. pred = model(img, augment=opt.augment)[0]
  40. # Apply NMS
  41. pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
  42. t2 = time_synchronized()
  43. # Apply Classifierif classify:
  44. pred = apply_classifier(pred, modelc, img, im0s)
  45. # Process detectionsfor i, det inenumerate(pred): # detections per imageif webcam: # batch_size >= 1
  46. p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
  47. else:
  48. p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
  49. p = Path(p) # to Path
  50. save_path = str(save_dir / p.name) # img.jpg
  51. txt_path = str(save_dir / 'labels' / p.stem) + (''if dataset.mode == 'image'elsef'_{frame}') # img.txt
  52. s += '%gx%g ' % img.shape[2:] # print string
  53. gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwhiflen(det):
  54. # Rescale boxes from img_size to im0 size
  55. det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
  56. # Write resultsfor *xyxy, conf, cls inreversed(det):
  57. if save_txt: # Write to file
  58. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  59. line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label formatwithopen(txt_path + '.txt', 'a') as f:
  60. f.write(('%g ' * len(line)).rstrip() % line + '\n')
  61. if save_img or view_img: # Add bbox to image
  62. label = f'{names[int(cls)]}{conf:.2f}'
  63. plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
  64. # Print time (inference + NMS)print(f'{s}Done. ({t2 - t1:.3f}s)')
  65. # Save results (image with detections)if save_img:
  66. if dataset.mode == 'image':
  67. cv2.imwrite(save_path, im0)
  68. else: # 'video'if vid_path != save_path: # new video
  69. vid_path = save_path
  70. ifisinstance(vid_writer, cv2.VideoWriter):
  71. vid_writer.release() # release previous video writer
  72. fourcc = 'mp4v'# output video codec
  73. fps = vid_cap.get(cv2.CAP_PROP_FPS)
  74. w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
  75. h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
  76. vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
  77. vid_writer.write(im0)
  78. if save_txt or save_img:
  79. s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}"if save_txt else''print(f"Results saved to {save_dir}{s}")
  80. print(f'Done. ({time.time() - t0:.3f}s)')
  81. print(opt)
  82. check_requirements()
  83. with torch.no_grad():
  84. if opt.update: # update all models (to fix SourceChangeWarning)for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
  85. detect()
  86. strip_optimizer(opt.weights)
  87. else:
  88. detect()

3.参数定义

代码如下(示例):

  1. if __name__ == '__main__':
  2. parser = argparse.ArgumentParser()
  3. parser.add_argument('--weights', nargs='+', type=str, default='yolov5_best_road_crack_recog.pt', help='model.pt path(s)')
  4. parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
  5. parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
  6. parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
  7. parser.add_argument('--view-img', action='store_true', help='display results')
  8. parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  9. parser.add_argument('--classes', nargs='+', type=int, default='0', help='filter by class: --class 0, or --class 0 2 3')
  10. parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
  11. parser.add_argument('--augment', action='store_true', help='augmented inference')
  12. parser.add_argument('--update', action='store_true', help='update all models')
  13. parser.add_argument('--project', default='runs/detect', help='save results to project/name')
  14. parser.add_argument('--name', default='exp', help='save results to project/name')
  15. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  16. opt = parser.parse_args()
  17. print(opt)
  18. check_requirements()
  19. with torch.no_grad():
  20. if opt.update: # update all models (to fix SourceChangeWarning)for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
  21. detect()
  22. strip_optimizer(opt.weights)
  23. else:
  24. detect()
  1. 运行结果如下

三、在线协助:

如需安装运行环境或远程调试,见文章底部个人 QQ 名片,由专业技术人员远程协助!
1)远程安装运行环境,代码调试
2)Qt, C++, Python入门指导
3)界面美化
4)软件制作

博主推荐文章:https://blog.csdn.net/alicema1111/article/details/123851014

个人博客主页:https://blog.csdn.net/alicema1111?type=blog

博主所有文章点这里:https://blog.csdn.net/alicema1111?type=blog

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/133650
推荐阅读
相关标签
  

闽ICP备14008679号