赞
踩
https://github.com/ultralytics/ultralytics
官方教程:https://docs.ultralytics.com/modes/train/
更建议下载代码后使用 下面指令安装,这样可以更改源码,如果不需要更改源码就直接pip install ultralytics也是可以的。
pip install -e .
这样安装后,可以直接修改yolov8源码,并且可以立即生效。此图是命令解释:
安装成功后:
pip list可以看到安装的包:
可以重新创建一个新的工程去使用安装好的ultralytics包,这样修改源码可以在別的工程。
下载一个demo数据集:https://ultralytics.com/assets/coco128.zip
最终文件:
train_coco.py,我给的绝对路径:
from ultralytics import YOLO
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # build from YAML and transfer weights
# Train the model
model.train(data='/ssd/xiedong/workplace/yolov8_script/coco128.yaml', epochs=100, imgsz=640)
coco128.yaml,这个文件在yolov8的源码中是有的,拉出来改一下,改为绝对路径。
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: /ssd/xiedong/workplace/yolov8_script/coco128 # dataset root dir train: images/train2017 # train images (relative to 'path') 128 images val: images/train2017 # val images (relative to 'path') 128 images test: # test images (optional) # Classes names: 0: person 1: bicycle 2: car 3: motorcycle 4: airplane 5: bus 6: train 7: truck 8: boat 9: traffic light 10: fire hydrant 11: stop sign 12: parking meter 13: bench 14: bird 15: cat 16: dog 17: horse 18: sheep 19: cow 20: elephant 21: bear 22: zebra 23: giraffe 24: backpack 25: umbrella 26: handbag 27: tie 28: suitcase 29: frisbee 30: skis 31: snowboard 32: sports ball 33: kite 34: baseball bat 35: baseball glove 36: skateboard 37: surfboard 38: tennis racket 39: bottle 40: wine glass 41: cup 42: fork 43: knife 44: spoon 45: bowl 46: banana 47: apple 48: sandwich 49: orange 50: broccoli 51: carrot 52: hot dog 53: pizza 54: donut 55: cake 56: chair 57: couch 58: potted plant 59: bed 60: dining table 61: toilet 62: tv 63: laptop 64: mouse 65: remote 66: keyboard 67: cell phone 68: microwave 69: oven 70: toaster 71: sink 72: refrigerator 73: book 74: clock 75: vase 76: scissors 77: teddy bear 78: hair drier 79: toothbrush # Download script/URL (optional) download: https://ultralytics.com/assets/coco128.zip
即可看到成功训练起来的情况:
Transferred 355/355 items from pretrained weights
Ultralytics YOLOv8.0.119 声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/150902
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。