当前位置:   article > 正文

动手学深度学习(四十三)——机器翻译及其数据构建_机器学习 学习翻译库实现翻译

机器学习 学习翻译库实现翻译

  这篇Blog开始介绍翻译,都是NLP的相关内容,翻译和我们前面提到的序列预测(RNN、LSTM、GRU等等)、填空(Bi-RNN)等等有什么联系和区别?

一、机器翻译

  机器翻译(machine translation)指的是将序列从一种语言自动翻译成另一种语言。事实上,这个研究领域可以追溯到数字计算机发明后不久的20世纪40年代,特别是在第二次世界大战中使用计算机破解语言编码。几十年来,在使用神经网络进行端到端学习的兴起之前,统计学方法在这一领域一直占据主导地位Brown.Cocke.Della-Pietra.ea.1988, Brown.Cocke.Della-Pietra.ea.1990 。因为 统计机器翻译(statistical machine translation)涉及了翻译模型和语言模型等组成部分的统计分析,因此基于神经网络的方法通常被称为 神经机器翻译(neural machine translation),用于将两种翻译模型区分开来。(统计机器翻译与神经机器翻译

  我们主要关注神经机器翻译方法,强调的是端到端的学习。与语言模型中的语料库是单一语言的语言模型问题存在不同,机器翻译的数据集是由源语言和目标语言的文本序列对组成的。因此,我们需要一种完全不同的方法来预处理机器翻译数据集,而不是复用语言模型的预处理程序。下面,我们将展示如何将预处理后的数据加载到小批量中用于训练。

二、机器翻译数据集

import os
import torch 
from d2l import torch as d2l
  • 1
  • 2
  • 3

1. 下载和预处理数据集

  首先,下载一个由Tatoeba项目的双语句子对组成的“英-法”数据集,数据集中的每一行都是制表符分隔文本序列对,序列对由英文文本序列和翻译后的法语文本序列组成。请注意,每个文本序列可以是一个句子,也可以是包含多个句子的一个段落。在这个将英语翻译成法语的机器翻译问题中,英语是 源语言(source language),法语是 目标语言(target language)。

d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip',
                           '94646ad1522d915e7b0f9296181140edcf86a4f5')

def read_data_nmt():
    """载入“英语-法语”数据集"""
    data_dir = d2l.download_extract('fra-eng')
    with open(os.path.join(data_dir,'fra.txt'),'r') as f:
        return f.read()

raw_text = read_data_nmt()
print(raw_text[:80])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
Go.	Va !
Hi.	Salut !
Run!	Cours !
Run!	Courez !
Who?	Qui ?
Wow!	Ça alors !
Fire!
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

1.1 文本预处理

  1. 使用空格代替不间断空格(non-breaking space)
  2. 使用小写字母代替大写字母
  3. 在单词和标点符号之间插入空格
def preprocess_nmt(text):
    """预处理"""
    # 使用空格替换不间断空格,(\xa0是拉丁扩展字符集里的字符,代表的是不间断空白符)
    # 使用小写字母替换大写字母
    text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()
    # 在单词和标点符号之间插入空格
    out = ''
    for i,char in enumerate(text):
        if i>0 and char in (',','!','.','?') and text[i-1] !=' ':
            out += ' '
        out +=char
    # 下面是沐神的原代码,我写成上面的感觉比较好理解
#     def no_space(char,prev_char):
#         return char in set(',.!?') and prev_char != ' '
#     out = [
#         ' ' + char if i > 0 and no_space(char, text[i - 1]) else char
#         for i, char in enumerate(text)]
    return ''.join(out)

text = preprocess_nmt(raw_text)
print(text[:80])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
go .	va !
hi .	salut !
run !	cours !
run !	courez !
who ?	qui ?
wow !	ça alors !
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

1.2 词元化 tokenization

我个人的理解:将句子/段落划分成一个个单词组成的向量。就像是把一把

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/176432
推荐阅读
相关标签