当前位置:   article > 正文

分类预测 | Matlab基于TTAO-CNN-LSTM-Attention三角拓扑聚合优化算法优化卷积神经网络-长短期记忆网络-注意力机制的数据分类预测

分类预测 | Matlab基于TTAO-CNN-LSTM-Attention三角拓扑聚合优化算法优化卷积神经网络-长短期记忆网络-注意力机制的数据分类预测

分类预测 | Matlab基于TTAO-CNN-LSTM-Attention三角拓扑聚合优化算法优化卷积神经网络-长短期记忆网络-注意力机制的数据分类预测

分类效果

在这里插入图片描述

在这里插入图片描述

基本介绍

【24年最新算法】[原创]TTAO-CNN-LSTM-Attention分类 基于三角拓扑聚合优化算法(TTAO)优化卷积神经网络(CNN)-长短期记忆网络(LSTM)-注意力机制(Attention)的数据分类预测,Matlab代码,可直接运行,适合小白新手,无需更改代码替换数据集即可运行!数据格式为excel!
三角拓扑聚合优化器(Triangulation Topology Aggregation Optimizer, TTAO)该成果人于2024年3月发表在SCI一区顶HExpert Systems With Applications上(如下图)
1、运行环境要求MATLAB版本为2022b及以上
2、代码中文注释清晰,质量极高
3、运行结果图包括分类效果图,迭代优化图,混淆矩阵图,ROC曲线图。
4、赠送测试数据集,可以直接运行源程序。 适合新手小白

在这里插入图片描述

程序设计

  • 完整程序和数据下载方式私信博主回复Matlab基于TTAO-CNN-LSTM-Attention三角拓扑聚合优化算法优化卷积神经网络-长短期记忆网络-注意力机制的数据分类预测

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid

%%  混淆矩阵
if flag_conusion == 1

    figure
    cm = confusionchart(T_train, T_sim1);
    cm.Title = 'Confusion Matrix for Train Data';
    cm.ColumnSummary = 'column-normalized';
    cm.RowSummary = 'row-normalized';
    
    figure
    cm = confusionchart(T_test, T_sim2);
    cm.Title = 'Confusion Matrix for Test Data';
    cm.ColumnSummary = 'column-normalized';
    cm.RowSummary = 'row-normalized';
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128440985?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128368295?spm=1001.2014.3001.5502

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/234115
推荐阅读
相关标签
  

闽ICP备14008679号