赞
踩
目录
中文预训练模型下载 当Bert遇上Keras:这可能是Bert最简单的打开姿势 keras-bert
不同模型的性能对比如下(可根据自己的数据选择合适的模型,模型越大需要训练的时间越长)
模型 | 开发集 | 测试集 |
---|---|---|
BERT | 83.1 (82.7) / 89.9 (89.6) | 82.2 (81.6) / 89.2 (88.8) |
ERNIE | 73.2 (73.0) / 83.9 (83.8) | 71.9 (71.4) / 82.5 (82.3) |
BERT-wwm | 84.3 (83.4) / 90.5 (90.2) | 82.8 (81.8) / 89.7 (89.0) |
BERT-wwm-ext | 85.0 (84.5) / 91.2 (90.9) | 83.6 (83.0) / 90.4 (89.9) |
RoBERTa-wwm-ext | 86.6 (85.9) / 92.5 (92.2) | 85.6 (85.2) / 92.0 (91.7) |
RoBERTa-wwm-ext-large | 89.6 (89.1) / 94.8 (94.4) | 89.6 (88.9) / 94.5 (94.1) |
使用的仍是用户评论情感极性判别的数据
训练集:data_train.csv ,样本数为82025,情感极性标签(0:负面、1:中性、2:正面)
测试集:data_test.csv ,样本数为35157
评论数据主要包括:食品餐饮类,旅游住宿类,金融服务类,医疗服务类,物流快递类;部分数据如下:
- import pandas as pd
- import codecs, gc
- import numpy as np
- from sklearn.model_selection import KFold
- from keras_bert import load_trained_model_from_checkpoint, Tokenizer
- from keras.metrics import top_k_categorical_accuracy
- from keras.layers import *
- from keras.callbacks import *
- from keras.models import Model
- import keras.backend as K
- from keras.optimizers import Adam
- from keras.utils import to_categorical
-
- #读取训练集和测试集
- train_df=pd.read_csv('data/data_train.csv', sep='\t', names=['id', 'type', 'contents', 'labels']).astype(str)
- test_df=pd.read_csv('data/data_test.csv', sep='\t', names=['id', 'type', 'contents']).astype(str)
-
- maxlen = 100 #设置序列长度为120,要保证序列长度不超过512
-
- #预训练好的模型
- config_path = 'chinese_roberta_wwm_large_ext_L-24_H-1024_A-16/bert_config.json'
- checkpoint_path = 'chinese_roberta_wwm_large_ext_L-24_H-1024_A-16/bert_model.ckpt'
- dict_path = 'chinese_roberta_wwm_large_ext_L-24_H-1024_A-16/vocab.txt'
-
- #将词表中的词编号转换为字典
- token_dict = {}
- with codecs.open(dict_path, 'r', 'utf8') as reader:
- for line in reader:
- token = line.strip()
- token_dict[token] = len(token_dict)
-
- #重写tokenizer
- class OurTokenizer(Tokenizer):
- def _tokenize(self, text):
- R = []
- for c in text:
- if c in self._token_dict:
- R.append(c)
- elif self._is_space(c):
- R.append('[unused1]') # 用[unused1]来表示空格类字符
- else:
- R.append('[UNK]') # 不在列表的字符用[UNK]表示
- return R
- tokenizer = OurTokenizer(token_dict)
-
- #让每条文本的长度相同,用0填充
- def seq_padding(X, padding=0):
- L = [len(x) for x in X]
- ML = max(L)
- return np.array([
- np.concatenate([x, [padding] * (ML - len(x))]) if len(x) < ML else x for x in X
- ])
-
- #data_generator只是一种为了节约内存的数据方式
- class data_generator:
- def __init__(self, data, batch_size=32, shuffle=True):
- self.data = data
- self.batch_size = batch_size
- self.shuffle = shuffle
- self.steps = len(self.data) // self.batch_size
- if len(self.data) % self.batch_size != 0:
- self.steps += 1
-
- def __len__(self):
- return self.steps
-
- def __iter__(self):
- while True:
- idxs = list(range(len(self.data)))
-
- if self.shuffle:
- np.random.shuffle(idxs)
-
- X1, X2, Y = [], [], []
- for i in idxs:
- d = self.data[i]
- text = d[0][:maxlen]
- x1, x2 = tokenizer.encode(first=text)
- y = d[1]
- X1.append(x1)
- X2.append(x2)
- Y.append([y])
- if len(X1) == self.batch_size or i == idxs[-1]:
- X1 = seq_padding(X1)
- X2 = seq_padding(X2)
- Y = seq_padding(Y)
- yield [X1, X2], Y[:, 0, :]
- [X1, X2, Y] = [], [], []
-
- #计算top-k正确率,当预测值的前k个值中存在目标类别即认为预测正确
- def acc_top2(y_true, y_pred):
- return top_k_categorical_accuracy(y_true, y_pred, k=2)
-
- #bert模型设置
- def build_bert(nclass):
- bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path, seq_len=None) #加载预训练模型
-
- for l in bert_model.layers:
- l.trainable = True
-
- x1_in = Input(shape=(None,))
- x2_in = Input(shape=(None,))
-
- x = bert_model([x1_in, x2_in])
- x = Lambda(lambda x: x[:, 0])(x) # 取出[CLS]对应的向量用来做分类
- p = Dense(nclass, activation='softmax')(x)
-
- model = Model([x1_in, x2_in], p)
- model.compile(loss='categorical_crossentropy',
- optimizer=Adam(1e-5), #用足够小的学习率
- metrics=['accuracy', acc_top2])
- print(model.summary())
- return model
-
- #训练数据、测试数据和标签转化为模型输入格式
- DATA_LIST = []
- for data_row in train_df.iloc[:].itertuples():
- DATA_LIST.append((data_row.contents, to_categorical(data_row.labels, 3)))
- DATA_LIST = np.array(DATA_LIST)
-
- DATA_LIST_TEST = []
- for data_row in test_df.iloc[:].itertuples():
- DATA_LIST_TEST.append((data_row.contents, to_categorical(0, 3)))
- DATA_LIST_TEST = np.array(DATA_LIST_TEST)
-
- #交叉验证训练和测试模型
- def run_cv(nfold, data, data_labels, data_test):
- kf = KFold(n_splits=nfold, shuffle=True, random_state=520).split(data)
- train_model_pred = np.zeros((len(data), 3))
- test_model_pred = np.zeros((len(data_test), 3))
-
- for i, (train_fold, test_fold) in enumerate(kf):
- X_train, X_valid, = data[train_fold, :], data[test_fold, :]
-
- model = build_bert(3)
- early_stopping = EarlyStopping(monitor='val_acc', patience=3) #早停法,防止过拟合
- plateau = ReduceLROnPlateau(monitor="val_acc", verbose=1, mode='max', factor=0.5, patience=2) #当评价指标不在提升时,减少学习率
- checkpoint = ModelCheckpoint('./bert_dump/' + str(i) + '.hdf5', monitor='val_acc',verbose=2, save_best_only=True, mode='max', save_weights_only=True) #保存最好的模型
-
- train_D = data_generator(X_train, shuffle=True)
- valid_D = data_generator(X_valid, shuffle=True)
- test_D = data_generator(data_test, shuffle=False)
- #模型训练
- model.fit_generator(
- train_D.__iter__(),
- steps_per_epoch=len(train_D),
- epochs=5,
- validation_data=valid_D.__iter__(),
- validation_steps=len(valid_D),
- callbacks=[early_stopping, plateau, checkpoint],
- )
-
- # model.load_weights('./bert_dump/' + str(i) + '.hdf5')
-
- # return model
- train_model_pred[test_fold, :] = model.predict_generator(valid_D.__iter__(), steps=len(valid_D), verbose=1)
- test_model_pred += model.predict_generator(test_D.__iter__(), steps=len(test_D), verbose=1)
-
- del model
- gc.collect() #清理内存
- K.clear_session() #clear_session就是清除一个session
- # break
-
- return train_model_pred, test_model_pred
-
- #n折交叉验证
- train_model_pred, test_model_pred = run_cv(2, DATA_LIST, None, DATA_LIST_TEST)
-
- test_pred = [np.argmax(x) for x in test_model_pred]
-
- #将测试集预测结果写入文件
- output=pd.DataFrame({'id':test_df.id,'sentiment':test_pred})
- output.to_csv('data/results.csv', index=None)
-
在服务器上跑了两天,终于完成了……
最终提交结果F1-score达到了94.90%,比使用的其他模型效果都好。
直接看排名结果,一下子上升到了第一,哈哈哈
Bert文本分类(keras-bert实现)源代码及数据集资源下载:
项目实战-Bert文本分类(keras-bert实现)源代码及数据集.zip-自然语言处理文档类资源-CSDN下载
本人博文NLP学习内容目录:
一、NLP基础学习
二、NLP项目实战
交流学习资料共享欢迎入群:955817470(群一),801295159(群二)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。