赞
踩
在GEE中,随机森林的介绍如下图:
/***********************已分好训练样本和实验样本******************************/ print("sam1_trainingPartition:",sam1_trainingPartition); print("sam1_testingPartition:",sam1_testingPartition); // 通过选取样本,把landcover属性赋予样本 //bands为数据集中波段组合 var trainingPartition = S1S2.select(bands).sampleRegions({ collection: sam1_trainingPartition, properties: ['landcover'], scale: 10, tileScale:16 }); var testingPartition = S1S2.select(bands).sampleRegions({ collection: sam1_testingPartition, properties: ['landcover'], scale: 10, tileScale:16 }); //先把棵树设置成10,后面会选择最优棵树 var trainedClassifier = ee.Classifier.smileRandomForest(10).train({ features: trainingPartition, classProperty: 'landcover', inputProperties: bands }); //对数据集进行分类 var class_img = S1S2.select(bands).classify(trainedClassifier).clip(roi);
选取随机森林的棵树
//选取森林棵树 var numTrees = ee.List.sequence(5, 50, 5); var accuracies = numTrees.map(function(t) { var classifier = ee.Classifier.smileRandomForest(t) .train({ features: trainingPartition, classProperty: 'landcover', inputProperties: bands }); return testingPartition .classify(classifier) .errorMatrix('landcover', 'classification') .accuracy(); }); print(ui.Chart.array.values({ array: ee.Array(accuracies), axis: 0, xLabels: numTrees }));
从图中可以看到当棵树为25,准确率最高,因此,可以把 ee.Classifier.smileRandomForest(10).train里面的参数设置成25,重新运行。
随机森林特征重要性,可以导出结果进行分析
//随机森林特征重要性 var dict = trainedClassifier.explain(); print('Explain:',dict); var variable_importance = ee.Feature(null, ee.Dictionary(dict).get('importance')); var chart = ui.Chart.feature.byProperty(variable_importance) .setChartType('ColumnChart') .setOptions({ title: 'Random Forest Variable Importance', legend: {position: 'none'}, hAxis: {title: 'Bands'}, vAxis: {title: 'Importance'} }); print(chart);
hAxis: {title: ‘Bands’},
vAxis: {title: ‘Importance’}
});
print(chart);
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。