赞
踩
1.nn.Module的基本使用
- import torch
- from torch import nn
-
- class Tudui(nn.Module):
- def __init__(self):
- super(Tudui, self).__init__()
-
- def forward(self,input):
- output = input + 1
- return output
-
- tudui = Tudui()
- x = torch.tensor(1.0)
- output = tudui(x)
- print(output)
2. 卷积基本操作
- import torch
- import torch.nn.functional as F
-
- input = torch.tensor([[1, 2, 0, 3, 1],
- [0, 1, 2, 3, 1],
- [1, 2, 1, 0, 0],
- [5, 2, 3, 1, 1],
- [2, 1, 0, 1, 1]])
-
- kernel = torch.tensor([[1, 2, 1],
- [0, 1, 0],
- [2, 1, 0]])
- #不满足尺寸要求 需要变换
- input = torch.reshape(input, (1, 1, 5, 5))
- kernel = torch.reshape(kernel, (1, 1, 3, 3))
-
- print(input.shape)
- print(kernel.shape)
-
- output1 = F.conv2d(input, kernel, stride=1)
- print(output1)
-
- output2 = F.conv2d(input, kernel, stride=2)
- print(output2)
-
- output3 = F.conv2d(input, kernel, stride=1,padding=1)
- print(output3)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。