当前位置:   article > 正文

Android 系统启动流程解析_proc: unrecognized mount option "hidepid=invisible

proc: unrecognized mount option "hidepid=invisible

1.android系统启动流程概述
  • Boot ROM:当电源按下,引导芯片代码开始从预定义的地方(固化在ROM)开始执行。加载引导程序到RAM,然后
    执行

  • Boot Loader:引导程序是在Android操作系统开始运行前的一个小程序。引导程序是运行的第一个程序,因此它是针
    对特定的主板与芯片的。

    引导程序分两个阶段执行:

    第一个阶段,检测外部的RAM以及加载对第二阶段有用的程序;

    第二阶段,引导程序设置网络、内存等等。这些对于运行内核是必要的,为了达到特殊的目标,引导程序可以根据配置参数或者输入数据设置内核。

  • Kernel:Android内核与桌面linux内核启动的方式差不多。内核启动时,设置缓存、被保护存储器、计划列表,加载驱动。当内核完成系统设置,它首先在系统文件中寻找”init”文件,然后启动root进程或者系统的第一个进程。

  • init( pid=1):init进程是Linux系统中用户空间的第一个进程,进程号固定为1。Kernel启动后,在用户空间启动init进
    程,并调用init中的main()方法执行init进程的职责。

    • 创建 挂载所需要启动的文件
    • 初始化 和启动属性服务
    • 解析init.rc 并启动zygote进程
  • zygote

  • System Server

  • Launcher app 手机桌面

2.init进程分析

其中init进程是Android系统中及其重要的第一个进程,这个进程的职责是:

  • 创建和挂载启动所需要的文件目录
  • 初始化和启动属性服务
  • 解析init.rc配置文件并启动Zygote进程

下面是:system/core/init/init.cpp部分源码

//init的main函数有两个其它入口,一是参数中有ueventd,进入ueventd_main,二是参数中有watchdogd,进入watchdogd_main
int main(int argc, char** argv) {
     /**
     * 1.strcmp是String的一个函数,比较字符串,相等返回0
     * 2.basename是C库中的一个函数,得到特定的路径中的最后一个'/'后面的内容,比如/sdcard/miui_recovery/backup,得到的结果是backup
     * 3.当argv[0]的内容为ueventd时,strcmp的值为0,!strcmp为1  1表示true,也就执行ueventd_main,ueventd主要是负责设备节点的创建、权限设定等一
     * 些列工作
     */
    if (!strcmp(basename(argv[0]), "ueventd")) {
        return ueventd_main(argc, argv);
    }
	//watchdogd俗称看门狗,用于系统出问题时重启系统
    if (!strcmp(basename(argv[0]), "watchdogd")) {
        return watchdogd_main(argc, argv);
    }

    if (argc > 1 && !strcmp(argv[1], "subcontext")) {
        InitKernelLogging(argv);
        const BuiltinFunctionMap function_map;
        return SubcontextMain(argc, argv, &function_map);
    }
	//初始化重启系统的处理信号,内部通过 sigaction 注册信号,当监听到该信号时重启系统
    if (REBOOT_BOOTLOADER_ON_PANIC) {
        InstallRebootSignalHandlers();
    }
    
	//查看是否有环境变量INIT_SECOND_STAGE
    bool is_first_stage = (getenv("INIT_SECOND_STAGE") == nullptr);
	//1.init的main方法会执行两次,由is_first_stage控制,first_stage就是第一阶段要 做的事
    if (is_first_stage) {
        boot_clock::time_point start_time = boot_clock::now();

        // Clear the umask.  清空文件权限
        umask(0);  

        clearenv();
        setenv("PATH", _PATH_DEFPATH, 1);
        // Get the basic filesystem setup we need put together in the initramdisk
        // on / and then we'll let the rc file figure out the rest.
        //mount是用来挂载文件系统的,mount属于Linux系统调用
        mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755");
        mkdir("/dev/pts", 0755); //创建目录,第一个参数是目录路径,第二个是读写权限
        mkdir("/dev/socket", 0755);
        mount("devpts", "/dev/pts", "devpts", 0, NULL);
        #define MAKE_STR(x) __STRING(x)
        mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC));
        // Don't expose the raw commandline to unprivileged processes.
        chmod("/proc/cmdline", 0440);  //用于修改文件/目录的读写权限
        gid_t groups[] = { AID_READPROC };
        setgroups(arraysize(groups), groups); // 用来将list 数组中所标明的组加入到目前进程的组设置中
        mount("sysfs", "/sys", "sysfs", 0, NULL);
        mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL);
		//mknod用于创建Linux中的设备文件
        mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11));

        if constexpr (WORLD_WRITABLE_KMSG) {
            mknod("/dev/kmsg_debug", S_IFCHR | 0622, makedev(1, 11));
        }

        mknod("/dev/random", S_IFCHR | 0666, makedev(1, 8));
        mknod("/dev/urandom", S_IFCHR | 0666, makedev(1, 9));

        // Mount staging areas for devices managed by vold
        // See storage config details at http://source.android.com/devices/storage/
        mount("tmpfs", "/mnt", "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV,
              "mode=0755,uid=0,gid=1000");
        // /mnt/vendor is used to mount vendor-specific partitions that can not be
        // part of the vendor partition, e.g. because they are mounted read-write.
        mkdir("/mnt/vendor", 0755);

        // Now that tmpfs is mounted on /dev and we have /dev/kmsg, we can actually
        // talk to the outside world...  //将标准输入输出重定向到"/sys/fs/selinux/null"
        InitKernelLogging(argv);

        LOG(INFO) << "init first stage started!";

        if (!DoFirstStageMount()) {
            LOG(FATAL) << "Failed to mount required partitions early ...";
        }
        //Avb即Android Verfied boot,功能包括Secure Boot, verfying boot 和 dm-verity,
        //原理都是对二进制文件进行签名,在系统启动时进行认证,确保系统运行的是合法的二进制镜像文件。
        //其中认证的范围涵盖:bootloader,boot.img,system.img
		//在刷机模式下初始化avb的版本,不是刷机模式直接跳过
        SetInitAvbVersionInRecovery();

        // Enable seccomp if global boot option was passed (otherwise it is enabled in zygote).
        global_seccomp();

        // Set up SELinux, loading the SELinux policy.  设置 SELinux,加载 SELinux 策略。
        SelinuxSetupKernelLogging();  
        SelinuxInitialize();//加载SELinux policy,也就是安全策略,

        // We're in the kernel domain, so re-exec init to transition to the init domain now
        // that the SELinux policy has been loaded.
        //1.我们执行第一遍时是在kernel domain,所以要重新执行 init文件,切换到init domain,这样SELinux policy才已经加载进来了
        //2.后面的security_failure函数会调用panic重启系统
        if (selinux_android_restorecon("/init", 0) == -1) {
            PLOG(FATAL) << "restorecon failed of /init failed";
        }

        setenv("INIT_SECOND_STAGE", "true", 1);

        static constexpr uint32_t kNanosecondsPerMillisecond = 1e6;
        uint64_t start_ms = start_time.time_since_epoch().count() / kNanosecondsPerMillisecond;
        setenv("INIT_STARTED_AT", std::to_string(start_ms).c_str(), 1);

        char* path = argv[0];
        char* args[] = { path, nullptr };
        execv(path, args);//重新执行main方法,进入第二阶段

        // execv() only returns if an error happened, in which case we
        // panic and never fall through this conditional.
        PLOG(FATAL) << "execv(\"" << path << "\") failed";
    }

    // At this point we're in the second stage of init.
    InitKernelLogging(argv);
    LOG(INFO) << "init second stage started!";

    // Set up a session keyring that all processes will have access to. It
    // will hold things like FBE encryption keys. No process should override
    // its session keyring.
    keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 1);

    // Indicate that booting is in progress to background fw loaders, etc.
    close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000));

    property_init();  //初始化属性系统,并从指定文件读取属性 从各个文件读取一些属性,然后通过property_set设置系统属性

    // If arguments are passed both on the command line and in DT,
    // properties set in DT always have priority over the command-line ones.
    
    //如果参数同时从命令行和DT传过来,DT的优先级总是大于命令行 
    //2.DT即device-tree,中文意思是设备树,这里面记录自己的硬件配置和系统运行参数,参考http://www.wowotech.net/linux_kenrel/why-dt.html
    process_kernel_dt();//处理DT属性
    process_kernel_cmdline();  //处理命令行属性

    // Propagate the kernel variables to internal variables
    // used by init as well as the current required properties.  将内核变量传播到 init 使用的内部变量以及当前所需的属性
    export_kernel_boot_props(); //处理其他的一些属性

    // Make the time that init started available for bootstat to log.
    property_set("ro.boottime.init", getenv("INIT_STARTED_AT"));
    property_set("ro.boottime.init.selinux", getenv("INIT_SELINUX_TOOK"));

    // Set libavb version for Framework-only OTA match in Treble build.
    const char* avb_version = getenv("INIT_AVB_VERSION");
    if (avb_version) property_set("ro.boot.avb_version", avb_version);

    // Clean up our environment.
    unsetenv("INIT_SECOND_STAGE");//清空这些环境变量,因为之前都已经存入到系统属性
    unsetenv("INIT_STARTED_AT");
    unsetenv("INIT_SELINUX_TOOK");
    unsetenv("INIT_AVB_VERSION");

    // Now set up SELinux for second stage.
    SelinuxSetupKernelLogging();
    SelabelInitialize();
    SelinuxRestoreContext();

    epoll_fd = epoll_create1(EPOLL_CLOEXEC);  //创建epoll实例,并返回epoll的文件描述符
    if (epoll_fd == -1) {
        PLOG(FATAL) << "epoll_create1 failed";
    }

    sigchld_handler_init();//主要是创建handler处理子进程终止信号,创建一个匿名socket并注册到epoll进行监听

    if (!IsRebootCapable()) {
        // If init does not have the CAP_SYS_BOOT capability, it is running in a container.
        // In that case, receiving SIGTERM will cause the system to shut down.
        InstallSigtermHandler();
    }

    property_load_boot_defaults();  //从文件中加载一些属性,读取usb配置
    export_oem_lock_status();//设置ro.boot.flash.locked 属性
    start_property_service();//开启一个socket监听系统属性的设置
    set_usb_controller();//设置sys.usb.controller 属性

    const BuiltinFunctionMap function_map; //方法映射“class_start”-> "do_class_start"
    Action::set_function_map(&function_map);   // 设置解析命令映射表  将function_map存放到Action中作 为成员属性

    subcontexts = InitializeSubcontexts();

    ActionManager& am = ActionManager::GetInstance();
    ServiceList& sm = ServiceList::GetInstance();

    LoadBootScripts(am, sm);   //加载 引导脚本 xxx.rc

    // Turning this on and letting the INFO logging be discarded adds 0.2s to
    // Nexus 9 boot time, so it's disabled by default.
    if (false) DumpState(); //打印一些当前Parser的信息,默认是不执行的

    am.QueueEventTrigger("early-init");//QueueEventTrigger用于触发Action,这里 触发 early-init事件

    // Queue an action that waits for coldboot done so we know ueventd has set up all of /dev...
    //QueueBuiltinAction用于添加Action,第一个参数是Action要执行的Command,第二个是Trigger
    am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done");
    // ... so that we can start queuing up actions that require stuff from /dev.
    am.QueueBuiltinAction(MixHwrngIntoLinuxRngAction, "MixHwrngIntoLinuxRng");
    am.QueueBuiltinAction(SetMmapRndBitsAction, "SetMmapRndBits");
    am.QueueBuiltinAction(SetKptrRestrictAction, "SetKptrRestrict");
    am.QueueBuiltinAction(keychord_init_action, "keychord_init");
    am.QueueBuiltinAction(console_init_action, "console_init");

    // Trigger all the boot actions to get us started.
    am.QueueEventTrigger("init");

    // Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random
    // wasn't ready immediately after wait_for_coldboot_done
    am.QueueBuiltinAction(MixHwrngIntoLinuxRngAction, "MixHwrngIntoLinuxRng");

    // Don't mount filesystems or start core system services in charger mode.
    std::string bootmode = GetProperty("ro.bootmode", "");
    if (bootmode == "charger") {
        am.QueueEventTrigger("charger");
    } else {
        am.QueueEventTrigger("late-init");
    }

    // Run all property triggers based on current state of the properties.
    am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers");

    while (true) {
        // By default, sleep until something happens.
        int epoll_timeout_ms = -1;  //epoll超时时间,相当于阻塞时间

        if (do_shutdown && !shutting_down) {
            do_shutdown = false;
            if (HandlePowerctlMessage(shutdown_command)) {
                shutting_down = true;
            }
        }
		//1.waiting_for_prop和IsWaitingForExec都是判断一个Timer为不为空,相当于一个标志位
        //2.waiting_for_prop负责属性设置,IsWaitingForExe负责service运行
        //3.当有属性设置或Service开始运行时,这两个值就不为空,直到执行完毕才置为空
        //4.其实这两个判断条件主要作用就是保证属性设置和service启动的完整性,也可以说是为了同步
        
        if (!(waiting_for_prop || Service::is_exec_service_running())) {
            am.ExecuteOneCommand();//执行一个command
        }
        if (!(waiting_for_prop || Service::is_exec_service_running())) {
            if (!shutting_down) {
                auto next_process_restart_time = RestartProcesses(); //重启服务

                // If there's a process that needs restarting, wake up in time for that.
                if (next_process_restart_time) {
                    epoll_timeout_ms = std::chrono::ceil<std::chrono::milliseconds>(
                                           *next_process_restart_time - boot_clock::now())
                                           .count();
                    if (epoll_timeout_ms < 0) epoll_timeout_ms = 0; //当还有命令要执行时,将epoll_timeout_ms设置为0
                }
            }

            // If there's more work to do, wake up again immediately.
            if (am.HasMoreCommands()) epoll_timeout_ms = 0;
        }

        epoll_event ev;
		//1.epoll_wait与epoll_create1、epoll_ctl是一起使用的
        //2.epoll_create1用于创建epoll的文件描述符,epoll_ctl、epoll_wait都把创建的fd作为第一个参数传入
        //3.epoll_ctl用于操作epoll,EPOLL_CTL_ADD:注册新的fd到epfd中,EPOLL_CTL_MOD:修改已经注册的fd的监听事件,EPOLL_CTL_DEL:从epfd中删除一个fd;
        //4.epoll_wait用于等待事件的产生,epoll_ctl调用EPOLL_CTL_ADD时会传入需要监听什么类型的事件,比如EPOLLIN表示监听fd可读,当该fd有可读的数据时,调用epoll_wait经过epoll_timeout_ms时间就会把该事件的信息返回给&ev
        int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, epoll_timeout_ms));
        if (nr == -1) {
            PLOG(ERROR) << "epoll_wait failed";
        } else if (nr == 1) {
            ((void (*)()) ev.data.ptr)(); //当有event返回时,取出 ev.data.ptr(之前epoll_ctl注册时的回调函数),直接执行 //在signal_handler_init和start_property_service有注册两个fd的监 听,一个用于监听SIGCHLD(子进程结束信号),一个用于监听属性设置
        }
    }

    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
3.init.rc 文件解析

init.rc是一个非常重要的配置文件,它是由Android初始化语言(Android Init Language)编写的脚本,它主要包含五种类型语句:Action(Action中包含了一系列的Command)、Commands(init语言中的命令)、Services(由init进程启动的服务)、Options(对服务进行配置的选项)和Import(引入其他配置文件)。init.rc的配置代码如下所示:

# \system\core\rootdir\init.rc
on init # L41
sysclktz 0
# Mix device-specific information into the entropy pool
copy /proc/cmdline /dev/urandom
copy /default.prop /dev/urandom

on <trigger> [&& <trigger>]* //设置触发器
<command>
<command> //动作触发之后要执行的命令
service <name> <pathname> [ <argument> ]* //<service的名字><执行程序路径><传递参数>
<option> //Options是Services的参数配置. 它们影响Service如何运行及运行时机
group <groupname> [ <groupname>\* ] //在启动Service前将group改为第一个groupname,第一个groupname是必须有的,
//默认值为root(或许默认值是无),第二个groupname可以不设置,用于追加组(通过
setgroups)
priority <priority> //设置进程优先级. 在-20~19之间,默认值是0,能过setpriority实现
socket <name> <type> <perm> [ <user> [ <group> [ <seclabel> ] ] ]//创建一个unix域的socket,名字叫/dev/socket/name , 并将fd返回给Service. type 只能是"dgram", "stream" or "seqpacket".
    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

Action: 通过触发器trigger,即以on开头的语句来决定执行相应的service的时机,具体有如下时机:

  • on early-init; 在初始化早期阶段触发;
  • on init; 在初始化阶段触发;
  • on late-init; 在初始化晚期阶段触发;
  • on boot/charger: 当系统启动/充电时触发,还包含其他情况,此处不一一列举;
  • on property:=: 当属性值满足条件时触发

Service:服务Service,以 service开头,由init进程启动,一般运行在init的一个子进程,所以启动service前需要判断对应的可执行文件是否存在。init生成的子进程,定义在rc文件,其中每一个service在启动时会通过fork方式生成子进程。

例如: service servicemanager /system/bin/servicemanager 代表的是服务名为servicemanager,服务执行的路径为/system/bin/servicemanager。

Command:常用的命令

  • class_start <service_class_name>: 启动属于同一个class的所有服务;
  • start <service_name>: 启动指定的服务,若已启动则跳过;
  • stop <service_name>: 停止正在运行的服务
  • setprop :设置属性值
  • mkdir :创建指定目录
  • symlink <sym_link>: 创建连接到的<sym_link>符号链接;
  • write : 向文件path中写入字符串;
  • exec: fork并执行,会阻塞init进程直到程序完毕;
  • exprot :设定环境变量;
  • loglevel :设置log级别

Options:是Service的可选项,与service配合使用

  • disabled: 不随class自动启动,只有根据service名才启动;
  • oneshot: service退出后不再重启;
  • user/group: 设置执行服务的用户/用户组,默认都是root;
  • class:设置所属的类名,当所属类启动/退出时,服务也启动/停止,默认为default;
  • onrestart:当服务重启时执行相应命令;
  • socket: 创建名为 /dev/socket/ 的socket
  • critical: 在规定时间内该service不断重启,则系统会重启并进入恢复模式

default:意味着disabled=false,oneshot=false,critical=false。

service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --
start-system-server
class main
priority -20
user root
group root readproc reserved_disk
socket zygote stream 660 root system
onrestart write /sys/android_power/request_state wake
onrestart write /sys/power/state on
onrestart restart audioserver
onrestart restart cameraserver
onrestart restart media
onrestart restart netd
onrestart restart wificond
writepid /dev/cpuset/foreground/tasks
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
4.service解析流程
// /system/core/init/init.cpp LoadBootScripts()
static void LoadBootScripts(ActionManager& action_manager, ServiceList& service_list) {
    Parser parser = CreateParser(action_manager, service_list);

    std::string bootscript = GetProperty("ro.boot.init_rc", "");
    if (bootscript.empty()) {
        parser.ParseConfig("/init.rc");  //解析init.rc 文件
        if (!parser.ParseConfig("/system/etc/init")) {
            late_import_paths.emplace_back("/system/etc/init");
        }
        if (!parser.ParseConfig("/product/etc/init")) {
            late_import_paths.emplace_back("/product/etc/init");
        }
        if (!parser.ParseConfig("/odm/etc/init")) {
            late_import_paths.emplace_back("/odm/etc/init");
        }
        if (!parser.ParseConfig("/vendor/etc/init")) {
            late_import_paths.emplace_back("/vendor/etc/init");
        }
    } else {
        parser.ParseConfig(bootscript);
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

\system\core\init\init.cpp CreateParser() L100

//创建解析器
Parser CreateParser(ActionManager& action_manager, ServiceList& service_list) {
    Parser parser;

    parser.AddSectionParser("service", std::make_unique<ServiceParser>(&service_list, subcontexts));
    parser.AddSectionParser("on", std::make_unique<ActionParser>(&action_manager, subcontexts));
    parser.AddSectionParser("import", std::make_unique<ImportParser>(&parser));

    return parser;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

\system\core\init\parser.cpp ParseData() L 42

//解析数据
void Parser::ParseData(const std::string& filename, const std::string& data, size_t* parse_errors) {
    // TODO: Use a parser with const input and remove this copy
    std::vector<char> data_copy(data.begin(), data.end());
    data_copy.push_back('\0');

    parse_state state;
    state.line = 0;
    state.ptr = &data_copy[0];
    state.nexttoken = 0;

    SectionParser* section_parser = nullptr;
    int section_start_line = -1;
    std::vector<std::string> args;

    auto end_section = [&] {
        if (section_parser == nullptr) return;

        if (auto result = section_parser->EndSection(); !result) {
            (*parse_errors)++;
            LOG(ERROR) << filename << ": " << section_start_line << ": " << result.error();
        }

        section_parser = nullptr;
        section_start_line = -1;
    };

    for (;;) {
        switch (next_token(&state)) {
            case T_EOF:
                end_section();
                return;
            case T_NEWLINE:
                state.line++;
                if (args.empty()) break;
                // If we have a line matching a prefix we recognize, call its callback and unset any
                // current section parsers.  This is meant for /sys/ and /dev/ line entries for
                // uevent.
                for (const auto& [prefix, callback] : line_callbacks_) {
                    if (android::base::StartsWith(args[0], prefix)) {
                        end_section();

                        if (auto result = callback(std::move(args)); !result) {
                            (*parse_errors)++;
                            LOG(ERROR) << filename << ": " << state.line << ": " << result.error();
                        }
                        break;
                    }
                }
                if (section_parsers_.count(args[0])) {
                    end_section();
                    section_parser = section_parsers_[args[0]].get();
                    section_start_line = state.line;
                    if (auto result =
                            section_parser->ParseSection(std::move(args), filename, state.line);
                        !result) {
                        (*parse_errors)++;
                        LOG(ERROR) << filename << ": " << state.line << ": " << result.error();
                        section_parser = nullptr;
                    }
                } else if (section_parser) {
                    if (auto result = section_parser->ParseLineSection(std::move(args), state.line);
                        !result) {
                        (*parse_errors)++;
                        LOG(ERROR) << filename << ": " << state.line << ": " << result.error();
                    }
                }
                args.clear();
                break;
            case T_TEXT:
                args.emplace_back(state.text);
                break;
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75

\system\core\init\service.cpp ParseSection() L1180

//解析部分
Result<Success> ServiceParser::ParseSection(std::vector<std::string>&& args,
                                            const std::string& filename, int line) {
    if (args.size() < 3) {
        return Error() << "services must have a name and a program";
    }

    const std::string& name = args[1];
    if (!IsValidName(name)) {
        return Error() << "invalid service name '" << name << "'";
    }

    Subcontext* restart_action_subcontext = nullptr;
    if (subcontexts_) {
        for (auto& subcontext : *subcontexts_) {
            if (StartsWith(filename, subcontext.path_prefix())) {
                restart_action_subcontext = &subcontext;
                break;
            }
        }
    }

    std::vector<std::string> str_args(args.begin() + 2, args.end());
    service_ = std::make_unique<Service>(name, restart_action_subcontext, str_args);
    return Success();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

\system\core\init\service.cpp ParseLineSection() L1206

Result<Success> ServiceParser::ParseLineSection(std::vector<std::string>&& args, int line) {
    return service_ ? service_->ParseLine(std::move(args)) : Success();
}
  • 1
  • 2
  • 3

\system\core\init\service.cpp EndSection() L1210

Result<Success> ServiceParser::EndSection() {
    if (service_) {
        Service* old_service = service_list_->FindService(service_->name());
        if (old_service) {
            if (!service_->is_override()) {
                return Error() << "ignored duplicate definition of service '" << service_->name()
                               << "'";
            }

            service_list_->RemoveService(*old_service);
            old_service = nullptr;
        }

        service_list_->AddService(std::move(service_));
    }

    return Success();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

\system\core\init\service.cpp AddService() L1082

void ServiceList::AddService(std::unique_ptr<Service> service) {
    services_.emplace_back(std::move(service));
}
  • 1
  • 2
  • 3

上面解析完成后,接下来就是启动Service,这里我们以启动Zygote来分析

\system\core\rootdir\init.rc L680

on nonencrypted
    class_start main  //class_start是一个命令,通过do_class_start函数处理
    class_start late_start
  • 1
  • 2
  • 3

\system\core\init\builtins..cpp do_class_start() L101

static Result<Success> do_class_start(const BuiltinArguments& args) {
    // Starting a class does not start services which are explicitly disabled.
    // They must  be started individually.
    for (const auto& service : ServiceList::GetInstance()) {
        if (service->classnames().count(args[1])) {
            if (auto result = service->StartIfNotDisabled(); !result) {
                LOG(ERROR) << "Could not start service '" << service->name()
                           << "' as part of class '" << args[1] << "': " << result.error();
            }
        }
    }
    return Success();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

\system\core\init\service.cpp StartIfNotDisabled() L977

Result<Success> Service::StartIfNotDisabled() {
    if (!(flags_ & SVC_DISABLED)) {
        return Start();
    } else {
        flags_ |= SVC_DISABLED_START;
    }
    return Success();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

\system\core\init\service.cpp Start() L785

//启动服务
Result<Success> Service::Start() {
    bool disabled = (flags_ & (SVC_DISABLED | SVC_RESET));  
    // Starting a service removes it from the disabled or reset state and
    // immediately takes it out of the restarting state if it was in there.
    flags_ &= (~(SVC_DISABLED|SVC_RESTARTING|SVC_RESET|SVC_RESTART|SVC_DISABLED_START));

    // Running processes require no additional work --- if they're in the
    // process of exiting, we've ensured that they will immediately restart
    // on exit, unless they are ONESHOT. For ONESHOT service, if it's in
    // stopping status, we just set SVC_RESTART flag so it will get restarted
    // in Reap().
    if (flags_ & SVC_RUNNING) {//如果service已经运行,则不启动
        if ((flags_ & SVC_ONESHOT) && disabled) {
            flags_ |= SVC_RESTART;
        }
        // It is not an error to try to start a service that is already running.
        return Success();
    }

    bool needs_console = (flags_ & SVC_CONSOLE);
    if (needs_console) {
        if (console_.empty()) {
            console_ = default_console;
        }

        // Make sure that open call succeeds to ensure a console driver is
        // properly registered for the device node
        int console_fd = open(console_.c_str(), O_RDWR | O_CLOEXEC);
        if (console_fd < 0) {
            flags_ |= SVC_DISABLED;
            return ErrnoError() << "Couldn't open console '" << console_ << "'";
        }
        close(console_fd);
    }

    struct stat sb;
    //判断需要启动的service的对应的执行文件是否存在,不存在则不启动service
    if (stat(args_[0].c_str(), &sb) == -1) {
        flags_ |= SVC_DISABLED;
        return ErrnoError() << "Cannot find '" << args_[0] << "'";
    }

    std::string scon;
    if (!seclabel_.empty()) {
        scon = seclabel_;
    } else {
        auto result = ComputeContextFromExecutable(args_[0]);
        if (!result) {
            return result.error();
        }
        scon = *result;
    }

    LOG(INFO) << "starting service '" << name_ << "'...";
	//如果子进程没有启动,则调用fork函数创建子进程
    pid_t pid = -1;
    if (namespace_flags_) {
        pid = clone(nullptr, nullptr, namespace_flags_ | SIGCHLD, nullptr);
    } else {
        pid = fork();
    }

    if (pid == 0) {//当期代码逻辑在子进程中运行
        umask(077);

        if (auto result = EnterNamespaces(); !result) {
            LOG(FATAL) << "Service '" << name_ << "' could not enter namespaces: " << result.error();
        }

        if (namespace_flags_ & CLONE_NEWNS) {
            if (auto result = SetUpMountNamespace(); !result) {
                LOG(FATAL) << "Service '" << name_
                           << "' could not set up mount namespace: " << result.error();
            }
        }

        if (namespace_flags_ & CLONE_NEWPID) {
            // This will fork again to run an init process inside the PID
            // namespace.
            if (auto result = SetUpPidNamespace(); !result) {
                LOG(FATAL) << "Service '" << name_
                           << "' could not set up PID namespace: " << result.error();
            }
        }

        for (const auto& [key, value] : environment_vars_) {
            setenv(key.c_str(), value.c_str(), 1);
        }

        std::for_each(descriptors_.begin(), descriptors_.end(),
                      std::bind(&DescriptorInfo::CreateAndPublish, std::placeholders::_1, scon));

        // See if there were "writepid" instructions to write to files under /dev/cpuset/.
        auto cpuset_predicate = [](const std::string& path) {
            return StartsWith(path, "/dev/cpuset/");
        };
        auto iter = std::find_if(writepid_files_.begin(), writepid_files_.end(), cpuset_predicate);
        if (iter == writepid_files_.end()) {
            // There were no "writepid" instructions for cpusets, check if the system default
            // cpuset is specified to be used for the process.
            std::string default_cpuset = GetProperty("ro.cpuset.default", "");
            if (!default_cpuset.empty()) {
                // Make sure the cpuset name starts and ends with '/'.
                // A single '/' means the 'root' cpuset.
                if (default_cpuset.front() != '/') {
                    default_cpuset.insert(0, 1, '/');
                }
                if (default_cpuset.back() != '/') {
                    default_cpuset.push_back('/');
                }
                writepid_files_.push_back(
                    StringPrintf("/dev/cpuset%stasks", default_cpuset.c_str()));
            }
        }
        std::string pid_str = std::to_string(getpid());
        for (const auto& file : writepid_files_) {
            if (!WriteStringToFile(pid_str, file)) {
                PLOG(ERROR) << "couldn't write " << pid_str << " to " << file;
            }
        }

        if (ioprio_class_ != IoSchedClass_NONE) {
            if (android_set_ioprio(getpid(), ioprio_class_, ioprio_pri_)) {
                PLOG(ERROR) << "failed to set pid " << getpid()
                            << " ioprio=" << ioprio_class_ << "," << ioprio_pri_;
            }
        }

        if (needs_console) {
            setsid();
            OpenConsole();
        } else {
            ZapStdio();
        }

        // As requested, set our gid, supplemental gids, uid, context, and
        // priority. Aborts on failure.
        SetProcessAttributes();

        if (!ExpandArgsAndExecv(args_)) {//调用execv函数,启动sevice子进程
            PLOG(ERROR) << "cannot execve('" << args_[0] << "')";
        }

        _exit(127);
    }

    if (pid < 0) {
        pid_ = 0;
        return ErrnoError() << "Failed to fork";
    }

    if (oom_score_adjust_ != -1000) {
        std::string oom_str = std::to_string(oom_score_adjust_);
        std::string oom_file = StringPrintf("/proc/%d/oom_score_adj", pid);
        if (!WriteStringToFile(oom_str, oom_file)) {
            PLOG(ERROR) << "couldn't write oom_score_adj: " << strerror(errno);
        }
    }

    time_started_ = boot_clock::now();
    pid_ = pid;
    flags_ |= SVC_RUNNING;
    start_order_ = next_start_order_++;
    process_cgroup_empty_ = false;

    errno = -createProcessGroup(uid_, pid_);
    if (errno != 0) {
        PLOG(ERROR) << "createProcessGroup(" << uid_ << ", " << pid_ << ") failed for service '"
                    << name_ << "'";
    } else {
        if (swappiness_ != -1) {
            if (!setProcessGroupSwappiness(uid_, pid_, swappiness_)) {
                PLOG(ERROR) << "setProcessGroupSwappiness failed";
            }
        }

        if (soft_limit_in_bytes_ != -1) {
            if (!setProcessGroupSoftLimit(uid_, pid_, soft_limit_in_bytes_)) {
                PLOG(ERROR) << "setProcessGroupSoftLimit failed";
            }
        }

        if (limit_in_bytes_ != -1) {
            if (!setProcessGroupLimit(uid_, pid_, limit_in_bytes_)) {
                PLOG(ERROR) << "setProcessGroupLimit failed";
            }
        }
    }

    NotifyStateChange("running");
    return Success();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
5.zygote概述

Zygote中文翻译为“受精卵”,正如其名,它主要用于孵化子进程。所有的Java应用程序进程及系统服务SystemServer进程都由Zygote
进程通过Linux的fork()函数孵化出来的,Zygote进程最初的名字不是“zygote”而是“app_process”。

Zygote是一个C/S模型,Zygote进程作为服务端,它主要负责创建Java虚拟机,加载系统资源,启动SystemServer进程,以及在后续运行过程中启动普通的应用程序,其他进程作为客户端向它发出“孵化”请求,而Zygote接收到这个请求后就“孵化”出一个新的进程。比如,当点击Launcher里的应用程序图标去启动一个新的应用程序进程时,这个请求会到达框架层的核心服务ActivityManagerService中,当AMS收到这个请求后,它通过调用Process类发出一个“孵化”子进程的Socket请求,而Zygote监听到这个请求后就立刻fork一个新的进程出来。

6.zygote 触发流程
6.1.init.zygoteXX.rc
import /init.${ro.zygote}.rc
  • 1

${ro.zygote} 会被替换成 ro.zyogte 的属性值,这个是由不同的硬件厂商自己定制的:

  • zygote32: zygote 进程对应的执行程序是 app_process (纯 32bit 模式)
  • zygote64: zygote 进程对应的执行程序是 app_process64 (纯 64bit 模式)
  • zygote32_64: 启动两个 zygote 进程 (名为 zygote 和 zygote_secondary),对应的执行程序分别
    是 app_process32 (主模式)
  • zygote64_32: 启动两个 zygote 进程 (名为 zygote 和 zygote_secondary),对应的执行程序分别
    是 app_process64 (主模式)、app_process32
6.2.start zygote

system\core\rootdir\init.rc L560

# It is recommended to put unnecessary data/ initialization from post-fs-data
# to start-zygote in device's init.rc to unblock zygote start.
on zygote-start && property:ro.crypto.state=unencrypted
    # A/B update verifier that marks a successful boot.
    exec_start update_verifier_nonencrypted
    start netd
    start zygote
    start zygote_secondary

on zygote-start && property:ro.crypto.state=unsupported
    # A/B update verifier that marks a successful boot.
    exec_start update_verifier_nonencrypted
    start netd
    start zygote
    start zygote_secondary

on zygote-start && property:ro.crypto.state=encrypted && property:ro.crypto.type=file
    # A/B update verifier that marks a successful boot.
    exec_start update_verifier_nonencrypted
    start netd
    start zygote
    start zygote_secondary
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

zygote-start 是在 on late-init 中触发的

# Mount filesystems and start core system services.
on late-init
    trigger early-fs

    # Mount fstab in init.{$device}.rc by mount_all command. Optional parameter
    # '--early' can be specified to skip entries with 'latemount'.
    # /system and /vendor must be mounted by the end of the fs stage,
    # while /data is optional.
    trigger fs
    trigger post-fs

    # Mount fstab in init.{$device}.rc by mount_all with '--late' parameter
    # to only mount entries with 'latemount'. This is needed if '--early' is
    # specified in the previous mount_all command on the fs stage.
    # With /system mounted and properties form /system + /factory available,
    # some services can be started.
    trigger late-fs

    # Now we can mount /data. File encryption requires keymaster to decrypt
    # /data, which in turn can only be loaded when system properties are present.
    trigger post-fs-data

    # Now we can start zygote for devices with file based encryption
    trigger zygote-start   zygote 在late-init中触发的

    # Load persist properties and override properties (if enabled) from /data.
    trigger load_persist_props_action

    # Remove a file to wake up anything waiting for firmware.
    trigger firmware_mounts_complete

    trigger early-boot
    trigger boot
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

\frameworks\base\cmds\app_process\Android.mk

app_process_src_files := \
    app_main.cpp \
LOCAL_MODULE:= app_process
LOCAL_MULTILIB := both
LOCAL_MODULE_STEM_32 := app_process32
LOCAL_MODULE_STEM_64 := app_process64
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
6.3.Zygote启动过程

入口:\frameworks\base\cmds\app_process\app_main.cpp

在app_main.cpp的main函数中,主要做的事情就是参数解析. 这个函数有两种启动模式:

  • 一种是zygote模式,也就是初始化zygote进程,传递的参数有–start-system-server --socket-name=zygote,前者表示启动SystemServer,后者指定socket的名称
  • 一种是application模式,也就是启动普通应用程序,传递的参数有class名字以及class带的参数

两者最终都是调用AppRuntime对象的start函数,加载ZygoteInit或RuntimeInit两个Java类,并将之前整理的参数传入进去

在这里插入图片描述

\frameworks\base\cmds\app_process\app_main.cpp main()L280

if (strcmp(arg, "--zygote") == 0) {
    zygote = true;
    niceName = ZYGOTE_NICE_NAME;
} else if (strcmp(arg, "--start-system-server") == 0) {
    startSystemServer = true;
} else if (strcmp(arg, "--application") == 0) {
    application = true;
} else if (strncmp(arg, "--nice-name=", 12) == 0) {
    niceName.setTo(arg + 12);
} else if (strncmp(arg, "--", 2) != 0) {
    className.setTo(arg);
    break;
} 

...
    
 if (zygote) {
        runtime.start("com.android.internal.os.ZygoteInit", args, zygote);   //启动zygote
    } else if (className) {
        runtime.start("com.android.internal.os.RuntimeInit", args, zygote);
    } else {
        fprintf(stderr, "Error: no class name or --zygote supplied.\n");
        app_usage();
        LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied.");
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

app_process 里面定义了三种应用程序类型:

  • Zygote: com.android.internal.os.ZygoteInit

  • System Server, 不单独启动,而是由Zygote启动

  • 其他指定类名的Java 程序

\frameworks\base\core\jni\androidRuntime.cpp

/*static*/ JavaVM* AndroidRuntime::mJavaVM = NULL;

AndroidRuntime::AndroidRuntime(char* argBlockStart, const size_t argBlockLength) :
        mExitWithoutCleanup(false),
        mArgBlockStart(argBlockStart),
        mArgBlockLength(argBlockLength)
{
    SkGraphics::Init();

    // Pre-allocate enough space to hold a fair number of options.
    mOptions.setCapacity(20);

    assert(gCurRuntime == NULL);        // one per process
    gCurRuntime = this;
}

AndroidRuntime::~AndroidRuntime()
{
}

/*
 * Register native methods using JNI.
 */
/*static*/ int AndroidRuntime::registerNativeMethods(JNIEnv* env,
    const char* className, const JNINativeMethod* gMethods, int numMethods)
{
    return jniRegisterNativeMethods(env, className, gMethods, numMethods);
}

void AndroidRuntime::setArgv0(const char* argv0, bool setProcName) {
    if (setProcName) {
        int len = strlen(argv0);
        if (len < 15) {
            pthread_setname_np(pthread_self(), argv0);
        } else {
            pthread_setname_np(pthread_self(), argv0 + len - 15);
        }
    }
    memset(mArgBlockStart, 0, mArgBlockLength);
    strlcpy(mArgBlockStart, argv0, mArgBlockLength);
}

status_t AndroidRuntime::callMain(const String8& className, jclass clazz,
    const Vector<String8>& args)
{
    JNIEnv* env;
    jmethodID methodId;

    ALOGD("Calling main entry %s", className.string());

    env = getJNIEnv();
    if (clazz == NULL || env == NULL) {
        return UNKNOWN_ERROR;
    }

    methodId = env->GetStaticMethodID(clazz, "main", "([Ljava/lang/String;)V");
    if (methodId == NULL) {
        ALOGE("ERROR: could not find method %s.main(String[])\n", className.string());
        return UNKNOWN_ERROR;
    }

    /*
     * We want to call main() with a String array with our arguments in it.
     * Create an array and populate it.
     */
    jclass stringClass;
    jobjectArray strArray;

    const size_t numArgs = args.size();
    stringClass = env->FindClass("java/lang/String");
    strArray = env->NewObjectArray(numArgs, stringClass, NULL);

    for (size_t i = 0; i < numArgs; i++) {
        jstring argStr = env->NewStringUTF(args[i].string());
        env->SetObjectArrayElement(strArray, i, argStr);
    }

    env->CallStaticVoidMethod(clazz, methodId, strArray);
    return NO_ERROR;
}

/*
 * The VM calls this through the "exit" hook.
 */
static void runtime_exit(int code)
{
    gCurRuntime->exit(code);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88

Runtime 是支撑程序运行的基础库,它是与语言绑定在一起的:

  • C Runtime:就是C standard lib, 也就是我们常说的libc
  • Java Runtime: 同样,Wiki将其重定向到” Java Virtual Machine”, 这里当然包括Java 的支撑类库(.jar)
  • AndroidRuntime: 显而易见,就是为Android应用运行所需的运行时环境
    • Dalvik VM: Android的Java VM, 解释运行Dex格式Java程序。每个进程运行一个虚拟机(什么叫运行虚拟机?说白了,就是一些C代码,不停的去解释Dex格式的二进制码(Bytecode),把它们转成机器码(Machine code),然后执行,当然,现在大多数的Java 虚拟机都支持JIT,也就是说,bytecode可能在运行前就已经被转换成机器码,从而大大提高了性能。过去一个普遍的认识是Java 程序比C,C++等静态编译的语言慢,但随着JIT的介入和发展,这个已经完全是过去时了,JIT的动态性运行允许虚拟机根据运行时环境,优化机器码的生成,在某些情况下,Java甚至可以比C/C++跑得更快,同时又兼具平台无关的特性。
    • Android的Java 类库, 大部分来自于 Apache Hamony, 开源的Java API 实现,如 java.lang,java.util, java.net. 但去除了AWT, Swing 等部件。
    • JNI: C和Java互调的接口。
    • Libc: Android也有很多C代码,自然少不了libc,注意的是,Android的libc叫 bionic C

\frameworks\base\core\jni\androidRuntime.cpp start() L1091

/*
 * Start the Android runtime.  This involves starting the virtual machine
 * and calling the "static void main(String[] args)" method in the class
 * named by "className".
 *
 * Passes the main function two arguments, the class name and the specified
 * options string.
 启动 Android 运行时。这涉及启动虚拟机并在“className”命名的类中调用“static void main(String[] args)”方法。向主函数传递两个参数,类名和指定的选项字符串。
 */
void AndroidRuntime::start(const char* className, const Vector<String8>& options, bool zygote)
{
    ALOGD(">>>>>> START %s uid %d <<<<<<\n",
            className != NULL ? className : "(unknown)", getuid());

    static const String8 startSystemServer("start-system-server");

    /*
     * 'startSystemServer == true' means runtime is obsolete and not run from
     * init.rc anymore, so we print out the boot start event here.
     */
    for (size_t i = 0; i < options.size(); ++i) {
        if (options[i] == startSystemServer) {
           /* track our progress through the boot sequence */
           const int LOG_BOOT_PROGRESS_START = 3000;
           LOG_EVENT_LONG(LOG_BOOT_PROGRESS_START,  ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
        }
    }

    const char* rootDir = getenv("ANDROID_ROOT");
    if (rootDir == NULL) {
        rootDir = "/system";
        if (!hasDir("/system")) {
            LOG_FATAL("No root directory specified, and /android does not exist.");
            return;
        }
        setenv("ANDROID_ROOT", rootDir, 1);
    }

    //const char* kernelHack = getenv("LD_ASSUME_KERNEL");
    //ALOGD("Found LD_ASSUME_KERNEL='%s'\n", kernelHack);

    /* start the virtual machine */
    JniInvocation jni_invocation;
    jni_invocation.Init(NULL);
    JNIEnv* env;
    if (startVm(&mJavaVM, &env, zygote) != 0) {
        return;
    }
    onVmCreated(env);

    /*
     * Register android functions.
     */
    if (startReg(env) < 0) {
        ALOGE("Unable to register all android natives\n");
        return;
    }

    /*
     * We want to call main() with a String array with arguments in it.
     * At present we have two arguments, the class name and an option string.
     * Create an array to hold them.
     */
    jclass stringClass;
    jobjectArray strArray;
    jstring classNameStr;

    stringClass = env->FindClass("java/lang/String");
    assert(stringClass != NULL);
    strArray = env->NewObjectArray(options.size() + 1, stringClass, NULL);
    assert(strArray != NULL);
    classNameStr = env->NewStringUTF(className);
    assert(classNameStr != NULL);
    env->SetObjectArrayElement(strArray, 0, classNameStr);

    for (size_t i = 0; i < options.size(); ++i) {
        jstring optionsStr = env->NewStringUTF(options.itemAt(i).string());
        assert(optionsStr != NULL);
        env->SetObjectArrayElement(strArray, i + 1, optionsStr);
    }

    /*
     * Start VM.  This thread becomes the main thread of the VM, and will
     * not return until the VM exits.
     */
    char* slashClassName = toSlashClassName(className != NULL ? className : "");
    jclass startClass = env->FindClass(slashClassName);
    if (startClass == NULL) {
        ALOGE("JavaVM unable to locate class '%s'\n", slashClassName);
        /* keep going */
    } else {
        jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
            "([Ljava/lang/String;)V");
        if (startMeth == NULL) {
            ALOGE("JavaVM unable to find main() in '%s'\n", className);
            /* keep going */
        } else {
            env->CallStaticVoidMethod(startClass, startMeth, strArray);

#if 0
            if (env->ExceptionCheck())
                threadExitUncaughtException(env);
#endif
        }
    }
    free(slashClassName);

    ALOGD("Shutting down VM\n");
    if (mJavaVM->DetachCurrentThread() != JNI_OK)
        ALOGW("Warning: unable to detach main thread\n");
    if (mJavaVM->DestroyJavaVM() != 0)
        ALOGW("Warning: VM did not shut down cleanly\n");
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113

Java虚拟机的启动大致做了以下一些事情:

  • 从property读取一系列启动参数。

  • 创建和初始化结构体全局对象(每个进程)gDVM,及对应与JavaVM和JNIEnv的内部结构体JavaVMExt, JNIEnvExt.

  • 初始化java虚拟机,并创建虚拟机线程

  • 注册系统的JNI,Java程序通过这些JNI接口来访问底层的资源。

  • 为Zygote的启动做最后的准备,包括设置SID/UID, 以及mount 文件系统

  • 返回JavaVM 给Native代码,这样它就可以向上访问Java的接口

\frameworks\base\core\jni\androidRuntime.cpp startVm()L596

int AndroidRuntime::startVm(JavaVM** pJavaVM, JNIEnv** pEnv, bool zygote)
{
    ...
        
/*
     * Initialize the VM.
     *
     * The JavaVM* is essentially per-process, and the JNIEnv* is per-thread.
     * If this call succeeds, the VM is ready, and we can start issuing
     * JNI calls.
     */
    if (JNI_CreateJavaVM(pJavaVM, pEnv, &initArgs) < 0) {
        ALOGE("JNI_CreateJavaVM failed\n");
        return -1;
    }

    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

\art\runtime\java_vm_ext.cc JNI_CreateJavaVM() L1139

extern "C" jint JNI_CreateJavaVM(JavaVM** p_vm, JNIEnv** p_env, void* vm_args) {
  ScopedTrace trace(__FUNCTION__);
  const JavaVMInitArgs* args = static_cast<JavaVMInitArgs*>(vm_args);
  if (JavaVMExt::IsBadJniVersion(args->version)) {
    LOG(ERROR) << "Bad JNI version passed to CreateJavaVM: " << args->version;
    return JNI_EVERSION;
  }
  RuntimeOptions options;
  for (int i = 0; i < args->nOptions; ++i) {
    JavaVMOption* option = &args->options[i];
    options.push_back(std::make_pair(std::string(option->optionString), option->extraInfo));
  }
  bool ignore_unrecognized = args->ignoreUnrecognized;
    //通过Runtime的create方法创建单例的Runtime对象
  if (!Runtime::Create(options, ignore_unrecognized)) {
    return JNI_ERR;
  }

  // Initialize native loader. This step makes sure we have
  // everything set up before we start using JNI.
  android::InitializeNativeLoader();

  Runtime* runtime = Runtime::Current();
  bool started = runtime->Start();
  if (!started) {
    delete Thread::Current()->GetJniEnv();
    delete runtime->GetJavaVM();
    LOG(WARNING) << "CreateJavaVM failed";
    return JNI_ERR;
  }

  *p_env = Thread::Current()->GetJniEnv();
  *p_vm = runtime->GetJavaVM();
  return JNI_OK;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

首先通过Runtime的create方法创建单例的Runtime对象,runtime负责提供art虚拟机的运行时环境,然后调用其init方法来初始化虚拟机

\art\runtime\runtime.cc Init() L1109

bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
L1255 创建java堆
     heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
                       runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
                       runtime_options.GetOrDefault(Opt::HeapMinFree),
                       runtime_options.GetOrDefault(Opt::HeapMaxFree),
                       runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
                       foreground_heap_growth_multiplier,
                       runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
                       runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
                       runtime_options.GetOrDefault(Opt::Image),
                       runtime_options.GetOrDefault(Opt::ImageInstructionSet),
                       // Override the collector type to CC if the read barrier config.
                       kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
                       kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
                                       : runtime_options.GetOrDefault(Opt::BackgroundGc),
                       runtime_options.GetOrDefault(Opt::LargeObjectSpace),
                       runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
                       runtime_options.GetOrDefault(Opt::ParallelGCThreads),
                       runtime_options.GetOrDefault(Opt::ConcGCThreads),
                       runtime_options.Exists(Opt::LowMemoryMode),
                       runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
                       runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
                       runtime_options.Exists(Opt::IgnoreMaxFootprint),
                       runtime_options.GetOrDefault(Opt::UseTLAB),
                       xgc_option.verify_pre_gc_heap_,
                       xgc_option.verify_pre_sweeping_heap_,
                       xgc_option.verify_post_gc_heap_,
                       xgc_option.verify_pre_gc_rosalloc_,
                       xgc_option.verify_pre_sweeping_rosalloc_,
                       xgc_option.verify_post_gc_rosalloc_,
                       xgc_option.gcstress_,
                       xgc_option.measure_,
                       runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
                       runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs));

  if (!heap_->HasBootImageSpace() && !allow_dex_file_fallback_) {
    LOG(ERROR) << "Dex file fallback disabled, cannot continue without image.";
    return false;
  }
    
   //L1408 创建java虚拟机
  std::string error_msg;
  java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
  if (java_vm_.get() == nullptr) {
    LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
    return false;
  }

  // Add the JniEnv handler.
  // TODO Refactor this stuff.
  java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);

  Thread::Startup();
    
    
    //L1424 连接主线程
  Thread* self = Thread::Attach("main", false, nullptr, false);
  CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
  CHECK(self != nullptr);

    // L1437 创建类连接器
    if (UNLIKELY(IsAotCompiler())) {
    class_linker_ = new AotClassLinker(intern_table_);
  } else {
    class_linker_ = new ClassLinker(intern_table_);
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • new gc::heap(),创建Heap对象,这是虚拟机管理对内存的起点。
  • new JavaVmExt(),创建Java虚拟机实例。
  • Thread::attach(),attach主线程
  • 创建ClassLinker
  • 初始化ClassLinker,成功attach到runtime环境后,创建ClassLinker实例负责管理java class到这里,虚拟机的创建和初始化就完成了

\art\runtime\threed.cc Attach() L775

template <typename PeerAction>
Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
  Runtime* runtime = Runtime::Current();
  if (runtime == nullptr) {
    LOG(ERROR) << "Thread attaching to non-existent runtime: " <<
        ((thread_name != nullptr) ? thread_name : "(Unnamed)");
    return nullptr;
  }
  Thread* self;
  {
    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    if (runtime->IsShuttingDownLocked()) {
      LOG(WARNING) << "Thread attaching while runtime is shutting down: " <<
          ((thread_name != nullptr) ? thread_name : "(Unnamed)");
      return nullptr;
    } else {
      Runtime::Current()->StartThreadBirth();
      self = new Thread(as_daemon);
      bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
      Runtime::Current()->EndThreadBirth();
      if (!init_success) {
        delete self;
        return nullptr;
      }
    }
  }

  self->InitStringEntryPoints();

  CHECK_NE(self->GetState(), kRunnable);
  self->SetState(kNative);

  // Run the action that is acting on the peer.
  if (!peer_action(self)) {
    runtime->GetThreadList()->Unregister(self);
    // Unregister deletes self, no need to do this here.
    return nullptr;
  }

  if (VLOG_IS_ON(threads)) {
    if (thread_name != nullptr) {
      VLOG(threads) << "Attaching thread " << thread_name;
    } else {
      VLOG(threads) << "Attaching unnamed thread.";
    }
    ScopedObjectAccess soa(self);
    self->Dump(LOG_STREAM(INFO));
  }

  {
    ScopedObjectAccess soa(self);
    runtime->GetRuntimeCallbacks()->ThreadStart(self);
  }

  return self;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56

除了系统的JNI接口(”javacore”, “nativehelper”), android framework 还有大量的Native实现,Android将所有这些接口一次性的通过start_reg()来完成

\frameworks\base\core\jni\androidRuntime.cpp startReg() L1511

/*
 * Register android native functions with the VM.
 */
/*static*/ int AndroidRuntime::startReg(JNIEnv* env)
{
    ATRACE_NAME("RegisterAndroidNatives");
    /*
     * This hook causes all future threads created in this process to be
     * attached to the JavaVM.  (This needs to go away in favor of JNI
     * Attach calls.)
     */
    androidSetCreateThreadFunc((android_create_thread_fn) javaCreateThreadEtc);

    ALOGV("--- registering native functions ---\n");

    /*
     * Every "register" function calls one or more things that return
     * a local reference (e.g. FindClass).  Because we haven't really
     * started the VM yet, they're all getting stored in the base frame
     * and never released.  Use Push/Pop to manage the storage.
     */
    env->PushLocalFrame(200);

    if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) {
        env->PopLocalFrame(NULL);
        return -1;
    }
    env->PopLocalFrame(NULL);

    //createJavaThread("fubar", quickTest, (void*) "hello");

    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

\system\core\libutils\Threads.cpp run() L662

status_t Thread::run(const char* name, int32_t priority, size_t stack)
{
    LOG_ALWAYS_FATAL_IF(name == nullptr, "thread name not provided to Thread::run");

    Mutex::Autolock _l(mLock);

    if (mRunning) {
        // thread already started
        return INVALID_OPERATION;
    }

    // reset status and exitPending to their default value, so we can
    // try again after an error happened (either below, or in readyToRun())
    mStatus = NO_ERROR;
    mExitPending = false;
    mThread = thread_id_t(-1);

    // hold a strong reference on ourself
    mHoldSelf = this;

    mRunning = true;

    bool res;
    if (mCanCallJava) {
        res = createThreadEtc(_threadLoop,
                this, name, priority, stack, &mThread);
    } else {
        res = androidCreateRawThreadEtc(_threadLoop,
                this, name, priority, stack, &mThread);
    }

    if (res == false) {
        mStatus = UNKNOWN_ERROR;   // something happened!
        mRunning = false;
        mThread = thread_id_t(-1);
        mHoldSelf.clear();  // "this" may have gone away after this.

        return UNKNOWN_ERROR;
    }

    // Do not refer to mStatus here: The thread is already running (may, in fact
    // already have exited with a valid mStatus result). The NO_ERROR indication
    // here merely indicates successfully starting the thread and does not
    // imply successful termination/execution.
    return NO_ERROR;

    // Exiting scope of mLock is a memory barrier and allows new thread to run
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

它们的区别在是是否能够调用Java端函数,普通的thread就是对pthread_create的简单封装

\system\core\libutils\Threads.cpp run() L117

int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
                               void *userData,
                               const char* threadName __android_unused,
                               int32_t threadPriority,
                               size_t threadStackSize,
                               android_thread_id_t *threadId)
{
 	...
    errno = 0;
    pthread_t thread;
    int result = pthread_create(&thread, &attr,
                    (android_pthread_entry)entryFunction, userData);
   ...
    return 1;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

\frameworks\base\core\jni\androidRuntime.cpp javaCreateThreadEtc() L1271

/*
 * This is invoked from androidCreateThreadEtc() via the callback
 * set with androidSetCreateThreadFunc().
 *
 * We need to create the new thread in such a way that it gets hooked
 * into the VM before it really starts executing.
 */
/*static*/ int AndroidRuntime::javaCreateThreadEtc(
                                android_thread_func_t entryFunction,
                                void* userData,
                                const char* threadName,
                                int32_t threadPriority,
                                size_t threadStackSize,
                                android_thread_id_t* threadId)
{
    void** args = (void**) malloc(3 * sizeof(void*));   // javaThreadShell must free
    int result;

    LOG_ALWAYS_FATAL_IF(threadName == nullptr, "threadName not provided to javaCreateThreadEtc");

    args[0] = (void*) entryFunction;
    args[1] = userData;
    args[2] = (void*) strdup(threadName);   // javaThreadShell must free

    result = androidCreateRawThreadEtc(AndroidRuntime::javaThreadShell, args,
        threadName, threadPriority, threadStackSize, threadId);
    return result;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

\frameworks\base\core\jni\androidRuntime.cpp javaThreadShell() L1242

/*
 * When starting a native thread that will be visible from the VM, we
 * bounce through this to get the right attach/detach action.
 * Note that this function calls free(args)
 */
/*static*/ int AndroidRuntime::javaThreadShell(void* args) {
    void* start = ((void**)args)[0];
    void* userData = ((void **)args)[1];
    char* name = (char*) ((void **)args)[2];        // we own this storage
    free(args);
    JNIEnv* env;
    int result;

    /* hook us into the VM */
    if (javaAttachThread(name, &env) != JNI_OK)
        return -1;

    /* start the thread running */
    result = (*(android_thread_func_t)start)(userData);

    /* unhook us */
    javaDetachThread();
    free(name);

    return result;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

\frameworks\base\core\jni\androidRuntime.cpp javaThreadShell() L1200

/*
 * Makes the current thread visible to the VM.
 *
 * The JNIEnv pointer returned is only valid for the current thread, and
 * thus must be tucked into thread-local storage.
 */
static int javaAttachThread(const char* threadName, JNIEnv** pEnv)
{
    JavaVMAttachArgs args;
    JavaVM* vm;
    jint result;

    vm = AndroidRuntime::getJavaVM();
    assert(vm != NULL);

    args.version = JNI_VERSION_1_4;
    args.name = (char*) threadName;
    args.group = NULL;

    result = vm->AttachCurrentThread(pEnv, (void*) &args);
    if (result != JNI_OK)
        ALOGI("NOTE: attach of thread '%s' failed\n", threadName);

    return result;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

\frameworks\base\core\java\com\android\internal\os\RuntimeInit.java main() L325

public static final void main(String[] argv) {
    enableDdms();
    if (argv.length == 2 && argv[1].equals("application")) {
        if (DEBUG) Slog.d(TAG, "RuntimeInit: Starting application");
        //将System.out 和 System.err 输出重定向到Android 的Log系统(定义在android.util.Log)
        redirectLogStreams();
    } else {
        if (DEBUG) Slog.d(TAG, "RuntimeInit: Starting tool");
    }
//commonInit(): 初始化了一下系统属性,其中最重要的一点就是设置了一个未捕捉异常的
//handler,当代码有任何未知异常,就会执行它,调试过Android代码的经常看到的”*** FATAL
//EXCEPTION IN SYSTEM PROCESS” 打印就出自这里
    commonInit();

    /*
     * Now that we're running in interpreted code, call back into native code
     * to run the system.
     */
    nativeFinishInit();

    if (DEBUG) Slog.d(TAG, "Leaving RuntimeInit!");
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

\frameworks\base\core\jni\androidRuntime.cpp nativeFinishInit() L225

/*
 * Code written in the Java Programming Language calls here from main().
 */
static void com_android_internal_os_RuntimeInit_nativeFinishInit(JNIEnv* env, jobject clazz)
{
    gCurRuntime->onStarted();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

\frameworks\base\cmds\app_process\app_main.cpp onStarted()L78

virtual void onStarted()
{
    sp<ProcessState> proc = ProcessState::self();
    ALOGV("App process: starting thread pool.\n");
    proc->startThreadPool();

    AndroidRuntime* ar = AndroidRuntime::getRuntime();
    ar->callMain(mClassName, mClass, mArgs);

    IPCThreadState::self()->stopProcess();
    hardware::IPCThreadState::self()->stopProcess();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

\frameworks\base\core\java\com\android\internal\os\ZygotInit.java main() L750

public static void main(String argv[]) {
    ZygoteServer zygoteServer = new ZygoteServer();  //新建Zygote服务器端

    // Mark zygote start. This ensures that thread creation will throw
    // an error.
    ZygoteHooks.startZygoteNoThreadCreation();

    // Zygote goes into its own process group.
    try {
        Os.setpgid(0, 0);
    } catch (ErrnoException ex) {
        throw new RuntimeException("Failed to setpgid(0,0)", ex);
    }

    final Runnable caller;
    try {
        // Report Zygote start time to tron unless it is a runtime restart
        if (!"1".equals(SystemProperties.get("sys.boot_completed"))) {
            MetricsLogger.histogram(null, "boot_zygote_init",
                    (int) SystemClock.elapsedRealtime());
        }

        String bootTimeTag = Process.is64Bit() ? "Zygote64Timing" : "Zygote32Timing";
        TimingsTraceLog bootTimingsTraceLog = new TimingsTraceLog(bootTimeTag,
                Trace.TRACE_TAG_DALVIK);
        bootTimingsTraceLog.traceBegin("ZygoteInit");
        RuntimeInit.enableDdms();

        boolean startSystemServer = false;
        String socketName = "zygote";  //Dalvik VM进程系统
        String abiList = null;
        boolean enableLazyPreload = false;
        for (int i = 1; i < argv.length; i++) {
            //app_main.cpp中传的start-system-server参数吗,在这里用到了
            if ("start-system-server".equals(argv[i])) {
                startSystemServer = true;
            } else if ("--enable-lazy-preload".equals(argv[i])) {
                enableLazyPreload = true;
            } else if (argv[i].startsWith(ABI_LIST_ARG)) {
                abiList = argv[i].substring(ABI_LIST_ARG.length());
            } else if (argv[i].startsWith(SOCKET_NAME_ARG)) {
                socketName = argv[i].substring(SOCKET_NAME_ARG.length());
            } else {
                throw new RuntimeException("Unknown command line argument: " + argv[i]);
            }
        }

        if (abiList == null) {
            throw new RuntimeException("No ABI list supplied.");
        }

        zygoteServer.registerServerSocketFromEnv(socketName);
        // In some configurations, we avoid preloading resources and classes eagerly.
        // In such cases, we will preload things prior to our first fork.
        // 在有些情况下我们需要在第一个fork之前进行预加载资源
        if (!enableLazyPreload) {
            bootTimingsTraceLog.traceBegin("ZygotePreload");
            EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,
                SystemClock.uptimeMillis());
            preload(bootTimingsTraceLog);
            EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,
                SystemClock.uptimeMillis());
            bootTimingsTraceLog.traceEnd(); // ZygotePreload
        } else {
            Zygote.resetNicePriority();
        }

        // Do an initial gc to clean up after startup
        bootTimingsTraceLog.traceBegin("PostZygoteInitGC");
        gcAndFinalize();//主动进行一次资源GC
        bootTimingsTraceLog.traceEnd(); // PostZygoteInitGC

        bootTimingsTraceLog.traceEnd(); // ZygoteInit
        // Disable tracing so that forked processes do not inherit stale tracing tags from
        // Zygote.
        Trace.setTracingEnabled(false, 0);

        Zygote.nativeSecurityInit();

        // Zygote process unmounts root storage spaces.
        Zygote.nativeUnmountStorageOnInit();

        ZygoteHooks.stopZygoteNoThreadCreation();

        if (startSystemServer) {
            Runnable r = forkSystemServer(abiList, socketName, zygoteServer);

            // {@code r == null} in the parent (zygote) process, and {@code r != null} in the
            // child (system_server) process.
            if (r != null) {
                r.run();
                return;
            }
        }

        Log.i(TAG, "Accepting command socket connections");

        // The select loop returns early in the child process after a fork and
        // loops forever in the zygote.
        caller = zygoteServer.runSelectLoop(abiList);
    } catch (Throwable ex) {
        Log.e(TAG, "System zygote died with exception", ex);
        throw ex;
    } finally {
        zygoteServer.closeServerSocket();
    }

    // We're in the child process and have exited the select loop. Proceed to execute the
    // command.
    if (caller != null) {
        caller.run();
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113

preload() 的作用就是提前将需要的资源加载到VM中,比如class、resource等

\frameworks\base\core\java\com\android\internal\os\ZygotInit.java preload() L123

static void preload(TimingsTraceLog bootTimingsTraceLog) {
    Log.d(TAG, "begin preload");
    bootTimingsTraceLog.traceBegin("BeginIcuCachePinning");
    beginIcuCachePinning();
    bootTimingsTraceLog.traceEnd(); // BeginIcuCachePinning
    bootTimingsTraceLog.traceBegin("PreloadClasses");
    preloadClasses();
    bootTimingsTraceLog.traceEnd(); // PreloadClasses
    bootTimingsTraceLog.traceBegin("PreloadResources");
    preloadResources();
    bootTimingsTraceLog.traceEnd(); // PreloadResources
    Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadAppProcessHALs");
    nativePreloadAppProcessHALs();
    Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
    Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadOpenGL");
    preloadOpenGL();
    Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
    preloadSharedLibraries();
    preloadTextResources();
    // Ask the WebViewFactory to do any initialization that must run in the zygote process,
    // for memory sharing purposes.
    WebViewFactory.prepareWebViewInZygote();
    endIcuCachePinning();
    warmUpJcaProviders();
    Log.d(TAG, "end preload");

    sPreloadComplete = true;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

preloadClassess 将framework.jar里的preloaded-classes 定义的所有class load到内存里,preloaded-classes 编译Android后可以在framework/base下找到。而preloadResources 将系统的Resource(不是在用户apk里定义的resource)load到内存。资源preload到Zygoted的进程地址空间,所有fork的子进程将共享这份空间而无需重新load, 这大大减少了应用程序的启动时间,但反过来增加了系统的启动时间。通过对preload 类和资源数目进行调整可以加快系统启动。Preload也是Android启动最耗时的部分之一

\frameworks\base\core\java\com\android\internal\os\ZygotInit.java gcAndFinalize() L439

/**
 * Runs several special GCs to try to clean up a few generations of
 * softly- and final-reachable objects, along with any other garbage.
 * This is only useful just before a fork().
 运行几个特殊的 GC 以尝试清理几代软可到达和最终可到达的对象,以及任何其他垃圾。这仅在 fork() 之前有用。
 */
/*package*/ static void gcAndFinalize() {
    final VMRuntime runtime = VMRuntime.getRuntime();

    /* runFinalizationSync() lets finalizers be called in Zygote,
     * which doesn't have a HeapWorker thread.
     */
    System.gc();
    runtime.runFinalizationSync();
    System.gc();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

gc()调用只是通知VM进行垃圾回收,是否回收,什么时候回收全由VM内部算法决定。GC的回收有一个复杂的状态机控制,通过多次调用,可以使得尽可能多的资源得到回收。gc()必须在fork之前完成(接下来的StartSystemServer就会有fork操作),这样将来被复制出来的子进程才能有尽可能少的垃圾内存没有释放

\frameworks\base\core\java\com\android\internal\os\ZygotInit.java forkSystemServer L657

/**
 * Prepare the arguments and forks for the system server process.
 *
 * Returns an {@code Runnable} that provides an entrypoint into system_server code in the
 * child process, and {@code null} in the parent.
 为系统服务器进程准备参数和分叉。返回一个 {@code Runnable},它为子进程中的 system_server 代码和父进程中的 {@code null} 提供入口点
 */
private static Runnable forkSystemServer(String abiList, String socketName,
        ZygoteServer zygoteServer) {
    long capabilities = posixCapabilitiesAsBits(
        OsConstants.CAP_IPC_LOCK,
        OsConstants.CAP_KILL,
        OsConstants.CAP_NET_ADMIN,
        OsConstants.CAP_NET_BIND_SERVICE,
        OsConstants.CAP_NET_BROADCAST,
        OsConstants.CAP_NET_RAW,
        OsConstants.CAP_SYS_MODULE,
        OsConstants.CAP_SYS_NICE,
        OsConstants.CAP_SYS_PTRACE,
        OsConstants.CAP_SYS_TIME,
        OsConstants.CAP_SYS_TTY_CONFIG,
        OsConstants.CAP_WAKE_ALARM,
        OsConstants.CAP_BLOCK_SUSPEND
    );
    /* Containers run without some capabilities, so drop any caps that are not available. */
    StructCapUserHeader header = new StructCapUserHeader(
            OsConstants._LINUX_CAPABILITY_VERSION_3, 0);
    StructCapUserData[] data;
    try {
        data = Os.capget(header);
    } catch (ErrnoException ex) {
        throw new RuntimeException("Failed to capget()", ex);
    }
    capabilities &= ((long) data[0].effective) | (((long) data[1].effective) << 32);

    /* Hardcoded command line to start the system server 硬编码命令行启动系统服务器 //启动SystemServer的命令行,部分参数写死 */
    String args[] = {
        "--setuid=1000",
        "--setgid=1000",
        "--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1021,1023,1024,1032,1065,3001,3002,3003,3006,3007,3009,3010",
        "--capabilities=" + capabilities + "," + capabilities,
        "--nice-name=system_server",
        "--runtime-args",
        "--target-sdk-version=" + VMRuntime.SDK_VERSION_CUR_DEVELOPMENT,
        "com.android.server.SystemServer",
    };
    ZygoteConnection.Arguments parsedArgs = null;

    int pid;

    try {
        parsedArgs = new ZygoteConnection.Arguments(args);
        ZygoteConnection.applyDebuggerSystemProperty(parsedArgs);
        ZygoteConnection.applyInvokeWithSystemProperty(parsedArgs);

        boolean profileSystemServer = SystemProperties.getBoolean(
                "dalvik.vm.profilesystemserver", false);
        if (profileSystemServer) {
            parsedArgs.runtimeFlags |= Zygote.PROFILE_SYSTEM_SERVER;
        }

        /* Request to fork the system server process  创建 system server 进程 */
        pid = Zygote.forkSystemServer(
                parsedArgs.uid, parsedArgs.gid,
                parsedArgs.gids,
                parsedArgs.runtimeFlags,
                null,
                parsedArgs.permittedCapabilities,
                parsedArgs.effectiveCapabilities);
    } catch (IllegalArgumentException ex) {
        throw new RuntimeException(ex);
    }

    /* For child process */
    if (pid == 0) {
        if (hasSecondZygote(abiList)) {
            waitForSecondaryZygote(socketName);
        }

        zygoteServer.closeServerSocket();
        return handleSystemServerProcess(parsedArgs);
    }

    return null;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85

ZygoteInit.forkSystemServer() 方法fork 出一个新的进程,这个进程就是SystemServer进程。fork出来的子进程在handleSystemServerProcess 里开始初始化工作,主要工作分为:

  • prepareSystemServerProfile()方法中将SYSTEMSERVERCLASSPATH中的AppInfo加载到VM中。

  • 判断fork args中是否有invokWith参数,如果有则进行WrapperInit.execApplication。如果没有则调用

\frameworks\base\core\java\com\android\internal\os\ZygoteInit.java handleSystemServerProcess() L453

/**
 * Finish remaining work for the newly forked system server process.
 */
private static Runnable handleSystemServerProcess(ZygoteConnection.Arguments parsedArgs) {
    // set umask to 0077 so new files and directories will default to owner-only permissions.
    Os.umask(S_IRWXG | S_IRWXO);

    if (parsedArgs.niceName != null) {
        Process.setArgV0(parsedArgs.niceName);
    }

    final String systemServerClasspath = Os.getenv("SYSTEMSERVERCLASSPATH");
    if (systemServerClasspath != null) {
        performSystemServerDexOpt(systemServerClasspath);
        // Capturing profiles is only supported for debug or eng builds since selinux normally
        // prevents it.
        boolean profileSystemServer = SystemProperties.getBoolean(
                "dalvik.vm.profilesystemserver", false);
        if (profileSystemServer && (Build.IS_USERDEBUG || Build.IS_ENG)) {
            try {//将SYSTEMSERVERCLASSPATH中的AppInfo加载到VM中
                prepareSystemServerProfile(systemServerClasspath);
            } catch (Exception e) {
                Log.wtf(TAG, "Failed to set up system server profile", e);
            }
        }
    }

    if (parsedArgs.invokeWith != null) {
        String[] args = parsedArgs.remainingArgs;
        // If we have a non-null system server class path, we'll have to duplicate the
        // existing arguments and append the classpath to it. ART will handle the classpath
        // correctly when we exec a new process.
        if (systemServerClasspath != null) {
            String[] amendedArgs = new String[args.length + 2];
            amendedArgs[0] = "-cp";
            amendedArgs[1] = systemServerClasspath;
            System.arraycopy(args, 0, amendedArgs, 2, args.length);
            args = amendedArgs;
        }
		//判断fork args中是否有invokWith参数,如果有则进行  WrapperInit.execApplication
        WrapperInit.execApplication(parsedArgs.invokeWith,
                parsedArgs.niceName, parsedArgs.targetSdkVersion,
                VMRuntime.getCurrentInstructionSet(), null, args);

        throw new IllegalStateException("Unexpected return from WrapperInit.execApplication");
    } else {
        ClassLoader cl = null;
        if (systemServerClasspath != null) {
            cl = createPathClassLoader(systemServerClasspath, parsedArgs.targetSdkVersion);

            Thread.currentThread().setContextClassLoader(cl);
        }

        /*
         * Pass the remaining arguments to SystemServer. 将剩余的参数传递给 SystemServer
         * 调用zygoteInit
         */
        return ZygoteInit.zygoteInit(parsedArgs.targetSdkVersion, parsedArgs.remainingArgs, cl);
    }

    /* should never reach here */
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62

\frameworks\base\core\java\com\android\internal\os\RuntimeInit.java applicationInit() L345

protected static Runnable applicationInit(int targetSdkVersion, String[] argv,
        ClassLoader classLoader) {
    // If the application calls System.exit(), terminate the process
    // immediately without running any shutdown hooks.  It is not possible to
    // shutdown an Android application gracefully.  Among other things, the
    // Android runtime shutdown hooks close the Binder driver, which can cause
    // leftover running threads to crash before the process actually exits.
   // 如果应用程序调用 System.exit(),立即终止进程而不运行任何关闭挂钩。无法正常关闭 Android 应用程序。除此之外,Android 运行时关闭挂钩会关闭 Binder 驱动程序,这可能会导致剩余运行的线程在进程实际退出之前崩溃
    nativeSetExitWithoutCleanup(true);

    // We want to be fairly aggressive about heap utilization, to avoid
    // holding on to a lot of memory that isn't needed.
    VMRuntime.getRuntime().setTargetHeapUtilization(0.75f);
    VMRuntime.getRuntime().setTargetSdkVersion(targetSdkVersion);

    final Arguments args = new Arguments(argv);

    // The end of of the RuntimeInit event (see #zygoteInit).
    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);

    // Remaining arguments are passed to the start class's static main
    return findStaticMain(args.startClass, args.startArgs, classLoader);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

\frameworks\base\core\java\com\android\internal\os\RuntimeInit.java findStaticMain() L287

/**
 * Invokes a static "main(argv[]) method on class "className".
 * Converts various failing exceptions into RuntimeExceptions, with
 * the assumption that they will then cause the VM instance to exit.
 * 在类“className”上调用静态“main(argv[]) 方法。将各种失败的异常转换为 RuntimeExceptions,假设它们将导致 VM 实例退出。
 * @param className Fully-qualified class name
 * @param argv Argument vector for main()
 * @param classLoader the classLoader to load {@className} with
 */
protected static Runnable findStaticMain(String className, String[] argv,
        ClassLoader classLoader) {
    Class<?> cl;

    try {
        cl = Class.forName(className, true, classLoader);
    } catch (ClassNotFoundException ex) {
        throw new RuntimeException(
                "Missing class when invoking static main " + className,
                ex);
    }

    Method m;
    try {
        m = cl.getMethod("main", new Class[] { String[].class });
    } catch (NoSuchMethodException ex) {
        throw new RuntimeException(
                "Missing static main on " + className, ex);
    } catch (SecurityException ex) {
        throw new RuntimeException(
                "Problem getting static main on " + className, ex);
    }

    int modifiers = m.getModifiers();
    if (! (Modifier.isStatic(modifiers) && Modifier.isPublic(modifiers))) {
        throw new RuntimeException(
                "Main method is not public and static on " + className);
    }

    /*
     * This throw gets caught in ZygoteInit.main(), which responds
     * by invoking the exception's run() method. This arrangement
     * clears up all the stack frames that were required in setting
     * up the process.
     */
    return new MethodAndArgsCaller(m, argv);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46

很明显这是一个耗时操作所以使用线程来完成:

\frameworks\base\core\java\com\android\internal\os\RuntimeInit.java MethodAndArgsCaller L479

/**
 * Helper class which holds a method and arguments and can call them. This is used as part of
 * a trampoline to get rid of the initial process setup stack frames.
 */
static class MethodAndArgsCaller implements Runnable {
    /** method to call */
    private final Method mMethod;

    /** argument array */
    private final String[] mArgs;

    public MethodAndArgsCaller(Method method, String[] args) {
        mMethod = method;
        mArgs = args;
    }

    public void run() {
        try {
            mMethod.invoke(null, new Object[] { mArgs });
        } catch (IllegalAccessException ex) {
            throw new RuntimeException(ex);
        } catch (InvocationTargetException ex) {
            Throwable cause = ex.getCause();
            if (cause instanceof RuntimeException) {
                throw (RuntimeException) cause;
            } else if (cause instanceof Error) {
                throw (Error) cause;
            }
            throw new RuntimeException(ex);
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
7.System Server 启动流程

System Server 是Zygote fork 的第一个Java 进程, 这个进程非常重要,因为他们有很多的系统线程,提供所有核心的系统服务

WindowManager, ActivityManager,它们都是运行在system_server的进程里。还有很多“Binder-x”的线程,它们是各个Service为了响应应用程序远程调用请求而创建的。除此之外,还有很多内部的线程,比如 ”UI thread”, “InputReader”, “InputDispatch” 等等,现在我们只关心System Server是如何创建起来的。

SystemServer的main() 函数。

/**
 * The main entry point from zygote.
 * zygote 的主要入口点。
 */
public static void main(String[] args) {
    new SystemServer().run();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

记下来我分成4部分详细分析SystemServer run方法的初始化流程:

  • 初始化必要的SystemServer环境参数,比如系统时间、默认时区、语言、load一些Library等等,
  • 初始化Looper,我们在主线程中使用到的looper就是在SystemServer中进行初始化的
  • 初始化Context,只有初始化一个Context才能进行启动Service等操作,这里看一下源码:
 // Initialize the system context. 初始化系统上下文。
private void createSystemContext() {
    ActivityThread activityThread = ActivityThread.systemMain();
    mSystemContext = activityThread.getSystemContext();
    mSystemContext.setTheme(DEFAULT_SYSTEM_THEME);

    final Context systemUiContext = activityThread.getSystemUiContext();
    systemUiContext.setTheme(DEFAULT_SYSTEM_THEME);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

ActivityThread就是这个时候生成的

继续看ActivityThread中如何生成Context:

    public ContextImpl getSystemContext() {
        synchronized(this) {
            if (mSystemContext == null) {
                ContextImpl context = ContextImpl.createSystemContext(this);
                LoadedApk info = new LoadedApk(this, "android", context, (ApplicationInfo)null, CompatibilityInfo.DEFAULT_COMPATIBILITY_INFO);
                context.init(info, (IBinder)null, this);
                context.getResources().updateConfiguration(this.getConfiguration(), this.getDisplayMetricsLocked(0, CompatibilityInfo.DEFAULT_COMPATIBILITY_INFO));
                mSystemContext = context;
            }
        }

        return mSystemContext;
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

ContextImpl是Context类的具体实现,createContext的方法:

static ContextImpl createSystemContext(ActivityThread mainThread) {
    ContextImpl context = new ContextImpl();
    context.init(Resources.getSystem(), mainThread, Process.myUserHandle());
    return context;
}
  • 1
  • 2
  • 3
  • 4
  • 5

初始化SystemServiceManager,用来管理启动service,SystemServiceManager中封装了启动Service的startService方法启动系统必要的Service,启动service的流程又分成三步走:

// Start services.
try {
    traceBeginAndSlog("StartServices");

    /*引导服务启动*/
    startBootstrapServices();
    startCoreServices();
    startOtherServices();
    SystemServerInitThreadPool.shutdown();
} catch (Throwable ex) {
    Slog.e("System", "******************************************");
    Slog.e("System", "************ Failure starting system services", ex);
    throw ex;
} finally {
    traceEnd();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

启动BootstrapServices,就是系统必须需要的服务,这些服务直接耦合性很高,所以干脆就放在一个方法里面一起启动,比如PowerManagerService、RecoverySystemService、DisplayManagerService、ActivityManagerService等等启动以基本的核心Service,很简单,只有三个BatteryService、
UsageStatsService、WebViewUpdateService启动其它需要用到的Service,比如NetworkScoreService、AlarmManagerService

Sytem Server 责任重大重任,出问题了zygote。Zygote会默默的在后台凝视这自己的大儿子,一旦发现SystemServer 挂掉了,将其回收,然后将自己杀掉,重新开始新的一生, 可怜天下父母心啊。这段实现在代码 :com_android_internal_os_Zygote.cpp 中,systemServer 和zygote 共存亡

// This signal handler is for zygote mode, since the zygote must reap its children
//此信号处理程序用于 zygote 模式,因为 zygote 必须收获其子代
static void SigChldHandler(int /*signal_number*/) {
  pid_t pid;
  int status;

  // It's necessary to save and restore the errno during this function.
  // Since errno is stored per thread, changing it here modifies the errno
  // on the thread on which this signal handler executes. If a signal occurs
  // between a call and an errno check, it's possible to get the errno set
  // here.
  // See b/23572286 for extra information.
  int saved_errno = errno;

  while ((pid = waitpid(-1, &status, WNOHANG)) > 0) {
     // Log process-death status that we care about.  In general it is
     // not safe to call LOG(...) from a signal handler because of
     // possible reentrancy.  However, we know a priori that the
     // current implementation of LOG() is safe to call from a SIGCHLD
     // handler in the zygote process.  If the LOG() implementation
     // changes its locking strategy or its use of syscalls within the
     // lazy-init critical section, its use here may become unsafe.
    if (WIFEXITED(status)) {
      ALOGI("Process %d exited cleanly (%d)", pid, WEXITSTATUS(status));
    } else if (WIFSIGNALED(status)) {
      ALOGI("Process %d exited due to signal (%d)", pid, WTERMSIG(status));
      if (WCOREDUMP(status)) {
        ALOGI("Process %d dumped core.", pid);
      }
    }

    // If the just-crashed process is the system_server, bring down zygote
    // so that it is restarted by init and system server will be restarted
    // from there.  如果刚刚崩溃的进程是 system_server,则关闭 zygote 以便它由 init 重新启动,系统服务器将从那里重新启动。
    //如果挂掉的是SystemServer
    if (pid == gSystemServerPid) {
      ALOGE("Exit zygote because system server (%d) has terminated", pid);
      kill(getpid(), SIGKILL);  //zygote 自杀 重启
    }
  }

  // Note that we shouldn't consider ECHILD an error because
  // the secondary zygote might have no children left to wait for.
  if (pid < 0 && errno != ECHILD) {
    ALOGW("Zygote SIGCHLD error in waitpid: %s", strerror(errno));
  }

  errno = saved_errno;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

总结:

  • init 根据init.rc 运行 app_process, 并携带‘–zygote’ 和 ’–startSystemServer’ 参数。
  • AndroidRuntime.cpp::start() 里将启动JavaVM,并且注册所有framework相关的系统JNI接口。
  • 第一次进入Java世界,运行ZygoteInit.java::main() 函数初始化Zygote. Zygote 并创建Socket的server 端。
  • 然后fork一个新的进程并在新进程里初始化SystemServer. Fork之前,Zygote是preload常用的Java类库,以及系统的resources,同时GC()清理内存空间,为子进程省去重复的工作。
  • SystemServer 里将所有的系统Service初始化,包括ActivityManager 和 WindowManager, 他们是应用程序运行起来的前提。
  • 依次同时,Zygote监听服务端Socket,等待新的应用启动请求。
  • ActivityManager ready 之后寻找系统的“Startup” Application, 将请求发给Zygote。
  • Zygote收到请求后,fork出一个新的进程。
  • Zygote监听并处理SystemServer 的 SIGCHID 信号,一旦System Server崩溃,立即将自己杀死。init会重启Zygote.

什么情况下Zygote进程会重启呢?

  • servicemanager进程被杀;
  • (onresart)surfaceflinger进程被杀;
  • (onresart)Zygote进程自己被杀;
  • (oneshot=false)system_server进程被杀; (waitpid)

8.fork 函数

8.1 fork介绍
pid_t fork(void)
  • 1

参数:不需要参数

需要的头文件 <sys/types.h> 和 <unistd.h>

返回值分两种情况:

  • 返回0表示成功创建子进程,并且接下来### Android 系统启动流程解析

1.android系统启动流程概述
  • Boot ROM:当电源按下,引导芯片代码开始从预定义的地方(固化在ROM)开始执行。加载引导程序到RAM,然后
    执行

  • Boot Loader:引导程序是在Android操作系统开始运行前的一个小程序。引导程序是运行的第一个程序,因此它是针
    对特定的主板与芯片的。

    引导程序分两个阶段执行:

    第一个阶段,检测外部的RAM以及加载对第二阶段有用的程序;

    第二阶段,引导程序设置网络、内存等等。这些对于运行内核是必要的,为了达到特殊的目标,引导程序可以根据配置参数或者输入数据设置内核。

  • Kernel:Android内核与桌面linux内核启动的方式差不多。内核启动时,设置缓存、被保护存储器、计划列表,加载驱动。当内核完成系统设置,它首先在系统文件中寻找”init”文件,然后启动root进程或者系统的第一个进程。

  • init( pid=1):init进程是Linux系统中用户空间的第一个进程,进程号固定为1。Kernel启动后,在用户空间启动init进
    程,并调用init中的main()方法执行init进程的职责。

    • 创建 挂载所需要启动的文件
    • 初始化 和启动属性服务
    • 解析init.rc 并启动zygote进程
  • zygote

  • System Server

  • Launcher app 手机桌面

2.init进程分析

其中init进程是Android系统中及其重要的第一个进程,这个进程的职责是:

  • 创建和挂载启动所需要的文件目录
  • 初始化和启动属性服务
  • 解析init.rc配置文件并启动Zygote进程

下面是:system/core/init/init.cpp部分源码

//init的main函数有两个其它入口,一是参数中有ueventd,进入ueventd_main,二是参数中有watchdogd,进入watchdogd_main
int main(int argc, char** argv) {
     /**
     * 1.strcmp是String的一个函数,比较字符串,相等返回0
     * 2.basename是C库中的一个函数,得到特定的路径中的最后一个'/'后面的内容,比如/sdcard/miui_recovery/backup,得到的结果是backup
     * 3.当argv[0]的内容为ueventd时,strcmp的值为0,!strcmp为1  1表示true,也就执行ueventd_main,ueventd主要是负责设备节点的创建、权限设定等一
     * 些列工作
     */
    if (!strcmp(basename(argv[0]), "ueventd")) {
        return ueventd_main(argc, argv);
    }
	//watchdogd俗称看门狗,用于系统出问题时重启系统
    if (!strcmp(basename(argv[0]), "watchdogd")) {
        return watchdogd_main(argc, argv);
    }

    if (argc > 1 && !strcmp(argv[1], "subcontext")) {
        InitKernelLogging(argv);
        const BuiltinFunctionMap function_map;
        return SubcontextMain(argc, argv, &function_map);
    }
	//初始化重启系统的处理信号,内部通过 sigaction 注册信号,当监听到该信号时重启系统
    if (REBOOT_BOOTLOADER_ON_PANIC) {
        InstallRebootSignalHandlers();
    }
    
	//查看是否有环境变量INIT_SECOND_STAGE
    bool is_first_stage = (getenv("INIT_SECOND_STAGE") == nullptr);
	//1.init的main方法会执行两次,由is_first_stage控制,first_stage就是第一阶段要 做的事
    if (is_first_stage) {
        boot_clock::time_point start_time = boot_clock::now();

        // Clear the umask.  清空文件权限
        umask(0);  

        clearenv();
        setenv("PATH", _PATH_DEFPATH, 1);
        // Get the basic filesystem setup we need put together in the initramdisk
        // on / and then we'll let the rc file figure out the rest.
        //mount是用来挂载文件系统的,mount属于Linux系统调用
        mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755");
        mkdir("/dev/pts", 0755); //创建目录,第一个参数是目录路径,第二个是读写权限
        mkdir("/dev/socket", 0755);
        mount("devpts", "/dev/pts", "devpts", 0, NULL);
        #define MAKE_STR(x) __STRING(x)
        mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC));
        // Don't expose the raw commandline to unprivileged processes.
        chmod("/proc/cmdline", 0440);  //用于修改文件/目录的读写权限
        gid_t groups[] = { AID_READPROC };
        setgroups(arraysize(groups), groups); // 用来将list 数组中所标明的组加入到目前进程的组设置中
        mount("sysfs", "/sys", "sysfs", 0, NULL);
        mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL);
		//mknod用于创建Linux中的设备文件
        mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11));

        if constexpr (WORLD_WRITABLE_KMSG) {
            mknod("/dev/kmsg_debug", S_IFCHR | 0622, makedev(1, 11));
        }

        mknod("/dev/random", S_IFCHR | 0666, makedev(1, 8));
        mknod("/dev/urandom", S_IFCHR | 0666, makedev(1, 9));

        // Mount staging areas for devices managed by vold
        // See storage config details at http://source.android.com/devices/storage/
        mount("tmpfs", "/mnt", "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV,
              "mode=0755,uid=0,gid=1000");
        // /mnt/vendor is used to mount vendor-specific partitions that can not be
        // part of the vendor partition, e.g. because they are mounted read-write.
        mkdir("/mnt/vendor", 0755);

        // Now that tmpfs is mounted on /dev and we have /dev/kmsg, we can actually
        // talk to the outside world...  //将标准输入输出重定向到"/sys/fs/selinux/null"
        InitKernelLogging(argv);

        LOG(INFO) << "init first stage started!";

        if (!DoFirstStageMount()) {
            LOG(FATAL) << "Failed to mount required partitions early ...";
        }
        //Avb即Android Verfied boot,功能包括Secure Boot, verfying boot 和 dm-verity,
        //原理都是对二进制文件进行签名,在系统启动时进行认证,确保系统运行的是合法的二进制镜像文件。
        //其中认证的范围涵盖:bootloader,boot.img,system.img
		//在刷机模式下初始化avb的版本,不是刷机模式直接跳过
        SetInitAvbVersionInRecovery();

        // Enable seccomp if global boot option was passed (otherwise it is enabled in zygote).
        global_seccomp();

        // Set up SELinux, loading the SELinux policy.  设置 SELinux,加载 SELinux 策略。
        SelinuxSetupKernelLogging();  
        SelinuxInitialize();//加载SELinux policy,也就是安全策略,

        // We're in the kernel domain, so re-exec init to transition to the init domain now
        // that the SELinux policy has been loaded.
        //1.我们执行第一遍时是在kernel domain,所以要重新执行 init文件,切换到init domain,这样SELinux policy才已经加载进来了
        //2.后面的security_failure函数会调用panic重启系统
        if (selinux_android_restorecon("/init", 0) == -1) {
            PLOG(FATAL) << "restorecon failed of /init failed";
        }

        setenv("INIT_SECOND_STAGE", "true", 1);

        static constexpr uint32_t kNanosecondsPerMillisecond = 1e6;
        uint64_t start_ms = start_time.time_since_epoch().count() / kNanosecondsPerMillisecond;
        setenv("INIT_STARTED_AT", std::to_string(start_ms).c_str(), 1);

        char* path = argv[0];
        char* args[] = { path, nullptr };
        execv(path, args);//重新执行main方法,进入第二阶段

        // execv() only returns if an error happened, in which case we
        // panic and never fall through this conditional.
        PLOG(FATAL) << "execv(\"" << path << "\") failed";
    }

    // At this point we're in the second stage of init.
    InitKernelLogging(argv);
    LOG(INFO) << "init second stage started!";

    // Set up a session keyring that all processes will have access to. It
    // will hold things like FBE encryption keys. No process should override
    // its session keyring.
    keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 1);

    // Indicate that booting is in progress to background fw loaders, etc.
    close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000));

    property_init();  //初始化属性系统,并从指定文件读取属性 从各个文件读取一些属性,然后通过property_set设置系统属性

    // If arguments are passed both on the command line and in DT,
    // properties set in DT always have priority over the command-line ones.
    
    //如果参数同时从命令行和DT传过来,DT的优先级总是大于命令行 
    //2.DT即device-tree,中文意思是设备树,这里面记录自己的硬件配置和系统运行参数,参考http://www.wowotech.net/linux_kenrel/why-dt.html
    process_kernel_dt();//处理DT属性
    process_kernel_cmdline();  //处理命令行属性

    // Propagate the kernel variables to internal variables
    // used by init as well as the current required properties.  将内核变量传播到 init 使用的内部变量以及当前所需的属性
    export_kernel_boot_props(); //处理其他的一些属性

    // Make the time that init started available for bootstat to log.
    property_set("ro.boottime.init", getenv("INIT_STARTED_AT"));
    property_set("ro.boottime.init.selinux", getenv("INIT_SELINUX_TOOK"));

    // Set libavb version for Framework-only OTA match in Treble build.
    const char* avb_version = getenv("INIT_AVB_VERSION");
    if (avb_version) property_set("ro.boot.avb_version", avb_version);

    // Clean up our environment.
    unsetenv("INIT_SECOND_STAGE");//清空这些环境变量,因为之前都已经存入到系统属性
    unsetenv("INIT_STARTED_AT");
    unsetenv("INIT_SELINUX_TOOK");
    unsetenv("INIT_AVB_VERSION");

    // Now set up SELinux for second stage.
    SelinuxSetupKernelLogging();
    SelabelInitialize();
    SelinuxRestoreContext();

    epoll_fd = epoll_create1(EPOLL_CLOEXEC);  //创建epoll实例,并返回epoll的文件描述符
    if (epoll_fd == -1) {
        PLOG(FATAL) << "epoll_create1 failed";
    }

    sigchld_handler_init();//主要是创建handler处理子进程终止信号,创建一个匿名socket并注册到epoll进行监听

    if (!IsRebootCapable()) {
        // If init does not have the CAP_SYS_BOOT capability, it is running in a container.
        // In that case, receiving SIGTERM will cause the system to shut down.
        InstallSigtermHandler();
    }

    property_load_boot_defaults();  //从文件中加载一些属性,读取usb配置
    export_oem_lock_status();//设置ro.boot.flash.locked 属性
    start_property_service();//开启一个socket监听系统属性的设置
    set_usb_controller();//设置sys.usb.controller 属性

    const BuiltinFunctionMap function_map; //方法映射“class_start”-> "do_class_start"
    Action::set_function_map(&function_map);   // 设置解析命令映射表  将function_map存放到Action中作 为成员属性

    subcontexts = InitializeSubcontexts();

    ActionManager& am = ActionManager::GetInstance();
    ServiceList& sm = ServiceList::GetInstance();

    LoadBootScripts(am, sm);   //加载 引导脚本 xxx.rc

    // Turning this on and letting the INFO logging be discarded adds 0.2s to
    // Nexus 9 boot time, so it's disabled by default.
    if (false) DumpState(); //打印一些当前Parser的信息,默认是不执行的

    am.QueueEventTrigger("early-init");//QueueEventTrigger用于触发Action,这里 触发 early-init事件

    // Queue an action that waits for coldboot done so we know ueventd has set up all of /dev...
    //QueueBuiltinAction用于添加Action,第一个参数是Action要执行的Command,第二个是Trigger
    am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done");
    // ... so that we can start queuing up actions that require stuff from /dev.
    am.QueueBuiltinAction(MixHwrngIntoLinuxRngAction, "MixHwrngIntoLinuxRng");
    am.QueueBuiltinAction(SetMmapRndBitsAction, "SetMmapRndBits");
    am.QueueBuiltinAction(SetKptrRestrictAction, "SetKptrRestrict");
    am.QueueBuiltinAction(keychord_init_action, "keychord_init");
    am.QueueBuiltinAction(console_init_action, "console_init");

    // Trigger all the boot actions to get us started.
    am.QueueEventTrigger("init");

    // Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random
    // wasn't ready immediately after wait_for_coldboot_done
    am.QueueBuiltinAction(MixHwrngIntoLinuxRngAction, "MixHwrngIntoLinuxRng");

    // Don't mount filesystems or start core system services in charger mode.
    std::string bootmode = GetProperty("ro.bootmode", "");
    if (bootmode == "charger") {
        am.QueueEventTrigger("charger");
    } else {
        am.QueueEventTrigger("late-init");
    }

    // Run all property triggers based on current state of the properties.
    am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers");

    while (true) {
        // By default, sleep until something happens.
        int epoll_timeout_ms = -1;  //epoll超时时间,相当于阻塞时间

        if (do_shutdown && !shutting_down) {
            do_shutdown = false;
            if (HandlePowerctlMessage(shutdown_command)) {
                shutting_down = true;
            }
        }
		//1.waiting_for_prop和IsWaitingForExec都是判断一个Timer为不为空,相当于一个标志位
        //2.waiting_for_prop负责属性设置,IsWaitingForExe负责service运行
        //3.当有属性设置或Service开始运行时,这两个值就不为空,直到执行完毕才置为空
        //4.其实这两个判断条件主要作用就是保证属性设置和service启动的完整性,也可以说是为了同步
        
        if (!(waiting_for_prop || Service::is_exec_service_running())) {
            am.ExecuteOneCommand();//执行一个command
        }
        if (!(waiting_for_prop || Service::is_exec_service_running())) {
            if (!shutting_down) {
                auto next_process_restart_time = RestartProcesses(); //重启服务

                // If there's a process that needs restarting, wake up in time for that.
                if (next_process_restart_time) {
                    epoll_timeout_ms = std::chrono::ceil<std::chrono::milliseconds>(
                                           *next_process_restart_time - boot_clock::now())
                                           .count();
                    if (epoll_timeout_ms < 0) epoll_timeout_ms = 0; //当还有命令要执行时,将epoll_timeout_ms设置为0
                }
            }

            // If there's more work to do, wake up again immediately.
            if (am.HasMoreCommands()) epoll_timeout_ms = 0;
        }

        epoll_event ev;
		//1.epoll_wait与epoll_create1、epoll_ctl是一起使用的
        //2.epoll_create1用于创建epoll的文件描述符,epoll_ctl、epoll_wait都把创建的fd作为第一个参数传入
        //3.epoll_ctl用于操作epoll,EPOLL_CTL_ADD:注册新的fd到epfd中,EPOLL_CTL_MOD:修改已经注册的fd的监听事件,EPOLL_CTL_DEL:从epfd中删除一个fd;
        //4.epoll_wait用于等待事件的产生,epoll_ctl调用EPOLL_CTL_ADD时会传入需要监听什么类型的事件,比如EPOLLIN表示监听fd可读,当该fd有可读的数据时,调用epoll_wait经过epoll_timeout_ms时间就会把该事件的信息返回给&ev
        int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, epoll_timeout_ms));
        if (nr == -1) {
            PLOG(ERROR) << "epoll_wait failed";
        } else if (nr == 1) {
            ((void (*)()) ev.data.ptr)(); //当有event返回时,取出 ev.data.ptr(之前epoll_ctl注册时的回调函数),直接执行 //在signal_handler_init和start_property_service有注册两个fd的监 听,一个用于监听SIGCHLD(子进程结束信号),一个用于监听属性设置
        }
    }

    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
3.init.rc 文件解析

init.rc是一个非常重要的配置文件,它是由Android初始化语言(Android Init Language)编写的脚本,它主要包含五种类型语句:Action(Action中包含了一系列的Command)、Commands(init语言中的命令)、Services(由init进程启动的服务)、Options(对服务进行配置的选项)和Import(引入其他配置文件)。init.rc的配置代码如下所示:

# \system\core\rootdir\init.rc
on init # L41
sysclktz 0
# Mix device-specific information into the entropy pool
copy /proc/cmdline /dev/urandom
copy /default.prop /dev/urandom

on <trigger> [&& <trigger>]* //设置触发器
<command>
<command> //动作触发之后要执行的命令
service <name> <pathname> [ <argument> ]* //<service的名字><执行程序路径><传递参数>
<option> //Options是Services的参数配置. 它们影响Service如何运行及运行时机
group <groupname> [ <groupname>\* ] //在启动Service前将group改为第一个groupname,第一个groupname是必须有的,
//默认值为root(或许默认值是无),第二个groupname可以不设置,用于追加组(通过
setgroups)
priority <priority> //设置进程优先级. 在-20~19之间,默认值是0,能过setpriority实现
socket <name> <type> <perm> [ <user> [ <group> [ <seclabel> ] ] ]//创建一个unix域的socket,名字叫/dev/socket/name , 并将fd返回给Service. type 只能是"dgram", "stream" or "seqpacket".
    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

Action: 通过触发器trigger,即以on开头的语句来决定执行相应的service的时机,具体有如下时机:

  • on early-init; 在初始化早期阶段触发;
  • on init; 在初始化阶段触发;
  • on late-init; 在初始化晚期阶段触发;
  • on boot/charger: 当系统启动/充电时触发,还包含其他情况,此处不一一列举;
  • on property:=: 当属性值满足条件时触发

Service:服务Service,以 service开头,由init进程启动,一般运行在init的一个子进程,所以启动service前需要判断对应的可执行文件是否存在。init生成的子进程,定义在rc文件,其中每一个service在启动时会通过fork方式生成子进程。

例如: service servicemanager /system/bin/servicemanager 代表的是服务名为servicemanager,服务执行的路径为/system/bin/servicemanager。

Command:常用的命令

  • class_start <service_class_name>: 启动属于同一个class的所有服务;
  • start <service_name>: 启动指定的服务,若已启动则跳过;
  • stop <service_name>: 停止正在运行的服务
  • setprop :设置属性值
  • mkdir :创建指定目录
  • symlink <sym_link>: 创建连接到的<sym_link>符号链接;
  • write : 向文件path中写入字符串;
  • exec: fork并执行,会阻塞init进程直到程序完毕;
  • exprot :设定环境变量;
  • loglevel :设置log级别

Options:是Service的可选项,与service配合使用

  • disabled: 不随class自动启动,只有根据service名才启动;
  • oneshot: service退出后不再重启;
  • user/group: 设置执行服务的用户/用户组,默认都是root;
  • class:设置所属的类名,当所属类启动/退出时,服务也启动/停止,默认为default;
  • onrestart:当服务重启时执行相应命令;
  • socket: 创建名为 /dev/socket/ 的socket
  • critical: 在规定时间内该service不断重启,则系统会重启并进入恢复模式

default:意味着disabled=false,oneshot=false,critical=false。

service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --
start-system-server
class main
priority -20
user root
group root readproc reserved_disk
socket zygote stream 660 root system
onrestart write /sys/android_power/request_state wake
onrestart write /sys/power/state on
onrestart restart audioserver
onrestart restart cameraserver
onrestart restart media
onrestart restart netd
onrestart restart wificond
writepid /dev/cpuset/foreground/tasks
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
4.service解析流程
// /system/core/init/init.cpp LoadBootScripts()
static void LoadBootScripts(ActionManager& action_manager, ServiceList& service_list) {
    Parser parser = CreateParser(action_manager, service_list);

    std::string bootscript = GetProperty("ro.boot.init_rc", "");
    if (bootscript.empty()) {
        parser.ParseConfig("/init.rc");  //解析init.rc 文件
        if (!parser.ParseConfig("/system/etc/init")) {
            late_import_paths.emplace_back("/system/etc/init");
        }
        if (!parser.ParseConfig("/product/etc/init")) {
            late_import_paths.emplace_back("/product/etc/init");
        }
        if (!parser.ParseConfig("/odm/etc/init")) {
            late_import_paths.emplace_back("/odm/etc/init");
        }
        if (!parser.ParseConfig("/vendor/etc/init")) {
            late_import_paths.emplace_back("/vendor/etc/init");
        }
    } else {
        parser.ParseConfig(bootscript);
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

\system\core\init\init.cpp CreateParser() L100

//创建解析器
Parser CreateParser(ActionManager& action_manager, ServiceList& service_list) {
    Parser parser;

    parser.AddSectionParser("service", std::make_unique<ServiceParser>(&service_list, subcontexts));
    parser.AddSectionParser("on", std::make_unique<ActionParser>(&action_manager, subcontexts));
    parser.AddSectionParser("import", std::make_unique<ImportParser>(&parser));

    return parser;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

\system\core\init\parser.cpp ParseData() L 42

//解析数据
void Parser::ParseData(const std::string& filename, const std::string& data, size_t* parse_errors) {
    // TODO: Use a parser with const input and remove this copy
    std::vector<char> data_copy(data.begin(), data.end());
    data_copy.push_back('\0');

    parse_state state;
    state.line = 0;
    state.ptr = &data_copy[0];
    state.nexttoken = 0;

    SectionParser* section_parser = nullptr;
    int section_start_line = -1;
    std::vector<std::string> args;

    auto end_section = [&] {
        if (section_parser == nullptr) return;

        if (auto result = section_parser->EndSection(); !result) {
            (*parse_errors)++;
            LOG(ERROR) << filename << ": " << section_start_line << ": " << result.error();
        }

        section_parser = nullptr;
        section_start_line = -1;
    };

    for (;;) {
        switch (next_token(&state)) {
            case T_EOF:
                end_section();
                return;
            case T_NEWLINE:
                state.line++;
                if (args.empty()) break;
                // If we have a line matching a prefix we recognize, call its callback and unset any
                // current section parsers.  This is meant for /sys/ and /dev/ line entries for
                // uevent.
                for (const auto& [prefix, callback] : line_callbacks_) {
                    if (android::base::StartsWith(args[0], prefix)) {
                        end_section();

                        if (auto result = callback(std::move(args)); !result) {
                            (*parse_errors)++;
                            LOG(ERROR) << filename << ": " << state.line << ": " << result.error();
                        }
                        break;
                    }
                }
                if (section_parsers_.count(args[0])) {
                    end_section();
                    section_parser = section_parsers_[args[0]].get();
                    section_start_line = state.line;
                    if (auto result =
                            section_parser->ParseSection(std::move(args), filename, state.line);
                        !result) {
                        (*parse_errors)++;
                        LOG(ERROR) << filename << ": " << state.line << ": " << result.error();
                        section_parser = nullptr;
                    }
                } else if (section_parser) {
                    if (auto result = section_parser->ParseLineSection(std::move(args), state.line);
                        !result) {
                        (*parse_errors)++;
                        LOG(ERROR) << filename << ": " << state.line << ": " << result.error();
                    }
                }
                args.clear();
                break;
            case T_TEXT:
                args.emplace_back(state.text);
                break;
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75

\system\core\init\service.cpp ParseSection() L1180

//解析部分
Result<Success> ServiceParser::ParseSection(std::vector<std::string>&& args,
                                            const std::string& filename, int line) {
    if (args.size() < 3) {
        return Error() << "services must have a name and a program";
    }

    const std::string& name = args[1];
    if (!IsValidName(name)) {
        return Error() << "invalid service name '" << name << "'";
    }

    Subcontext* restart_action_subcontext = nullptr;
    if (subcontexts_) {
        for (auto& subcontext : *subcontexts_) {
            if (StartsWith(filename, subcontext.path_prefix())) {
                restart_action_subcontext = &subcontext;
                break;
            }
        }
    }

    std::vector<std::string> str_args(args.begin() + 2, args.end());
    service_ = std::make_unique<Service>(name, restart_action_subcontext, str_args);
    return Success();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

\system\core\init\service.cpp ParseLineSection() L1206

Result<Success> ServiceParser::ParseLineSection(std::vector<std::string>&& args, int line) {
    return service_ ? service_->ParseLine(std::move(args)) : Success();
}
  • 1
  • 2
  • 3

\system\core\init\service.cpp EndSection() L1210

Result<Success> ServiceParser::EndSection() {
    if (service_) {
        Service* old_service = service_list_->FindService(service_->name());
        if (old_service) {
            if (!service_->is_override()) {
                return Error() << "ignored duplicate definition of service '" << service_->name()
                               << "'";
            }

            service_list_->RemoveService(*old_service);
            old_service = nullptr;
        }

        service_list_->AddService(std::move(service_));
    }

    return Success();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

\system\core\init\service.cpp AddService() L1082

void ServiceList::AddService(std::unique_ptr<Service> service) {
    services_.emplace_back(std::move(service));
}
  • 1
  • 2
  • 3

上面解析完成后,接下来就是启动Service,这里我们以启动Zygote来分析

\system\core\rootdir\init.rc L680

on nonencrypted
    class_start main  //class_start是一个命令,通过do_class_start函数处理
    class_start late_start
  • 1
  • 2
  • 3

\system\core\init\builtins..cpp do_class_start() L101

static Result<Success> do_class_start(const BuiltinArguments& args) {
    // Starting a class does not start services which are explicitly disabled.
    // They must  be started individually.
    for (const auto& service : ServiceList::GetInstance()) {
        if (service->classnames().count(args[1])) {
            if (auto result = service->StartIfNotDisabled(); !result) {
                LOG(ERROR) << "Could not start service '" << service->name()
                           << "' as part of class '" << args[1] << "': " << result.error();
            }
        }
    }
    return Success();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

\system\core\init\service.cpp StartIfNotDisabled() L977

Result<Success> Service::StartIfNotDisabled() {
    if (!(flags_ & SVC_DISABLED)) {
        return Start();
    } else {
        flags_ |= SVC_DISABLED_START;
    }
    return Success();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

\system\core\init\service.cpp Start() L785

//启动服务
Result<Success> Service::Start() {
    bool disabled = (flags_ & (SVC_DISABLED | SVC_RESET));  
    // Starting a service removes it from the disabled or reset state and
    // immediately takes it out of the restarting state if it was in there.
    flags_ &= (~(SVC_DISABLED|SVC_RESTARTING|SVC_RESET|SVC_RESTART|SVC_DISABLED_START));

    // Running processes require no additional work --- if they're in the
    // process of exiting, we've ensured that they will immediately restart
    // on exit, unless they are ONESHOT. For ONESHOT service, if it's in
    // stopping status, we just set SVC_RESTART flag so it will get restarted
    // in Reap().
    if (flags_ & SVC_RUNNING) {//如果service已经运行,则不启动
        if ((flags_ & SVC_ONESHOT) && disabled) {
            flags_ |= SVC_RESTART;
        }
        // It is not an error to try to start a service that is already running.
        return Success();
    }

    bool needs_console = (flags_ & SVC_CONSOLE);
    if (needs_console) {
        if (console_.empty()) {
            console_ = default_console;
        }

        // Make sure that open call succeeds to ensure a console driver is
        // properly registered for the device node
        int console_fd = open(console_.c_str(), O_RDWR | O_CLOEXEC);
        if (console_fd < 0) {
            flags_ |= SVC_DISABLED;
            return ErrnoError() << "Couldn't open console '" << console_ << "'";
        }
        close(console_fd);
    }

    struct stat sb;
    //判断需要启动的service的对应的执行文件是否存在,不存在则不启动service
    if (stat(args_[0].c_str(), &sb) == -1) {
        flags_ |= SVC_DISABLED;
        return ErrnoError() << "Cannot find '" << args_[0] << "'";
    }

    std::string scon;
    if (!seclabel_.empty()) {
        scon = seclabel_;
    } else {
        auto result = ComputeContextFromExecutable(args_[0]);
        if (!result) {
            return result.error();
        }
        scon = *result;
    }

    LOG(INFO) << "starting service '" << name_ << "'...";
	//如果子进程没有启动,则调用fork函数创建子进程
    pid_t pid = -1;
    if (namespace_flags_) {
        pid = clone(nullptr, nullptr, namespace_flags_ | SIGCHLD, nullptr);
    } else {
        pid = fork();
    }

    if (pid == 0) {//当期代码逻辑在子进程中运行
        umask(077);

        if (auto result = EnterNamespaces(); !result) {
            LOG(FATAL) << "Service '" << name_ << "' could not enter namespaces: " << result.error();
        }

        if (namespace_flags_ & CLONE_NEWNS) {
            if (auto result = SetUpMountNamespace(); !result) {
                LOG(FATAL) << "Service '" << name_
                           << "' could not set up mount namespace: " << result.error();
            }
        }

        if (namespace_flags_ & CLONE_NEWPID) {
            // This will fork again to run an init process inside the PID
            // namespace.
            if (auto result = SetUpPidNamespace(); !result) {
                LOG(FATAL) << "Service '" << name_
                           << "' could not set up PID namespace: " << result.error();
            }
        }

        for (const auto& [key, value] : environment_vars_) {
            setenv(key.c_str(), value.c_str(), 1);
        }

        std::for_each(descriptors_.begin(), descriptors_.end(),
                      std::bind(&DescriptorInfo::CreateAndPublish, std::placeholders::_1, scon));

        // See if there were "writepid" instructions to write to files under /dev/cpuset/.
        auto cpuset_predicate = [](const std::string& path) {
            return StartsWith(path, "/dev/cpuset/");
        };
        auto iter = std::find_if(writepid_files_.begin(), writepid_files_.end(), cpuset_predicate);
        if (iter == writepid_files_.end()) {
            // There were no "writepid" instructions for cpusets, check if the system default
            // cpuset is specified to be used for the process.
            std::string default_cpuset = GetProperty("ro.cpuset.default", "");
            if (!default_cpuset.empty()) {
                // Make sure the cpuset name starts and ends with '/'.
                // A single '/' means the 'root' cpuset.
                if (default_cpuset.front() != '/') {
                    default_cpuset.insert(0, 1, '/');
                }
                if (default_cpuset.back() != '/') {
                    default_cpuset.push_back('/');
                }
                writepid_files_.push_back(
                    StringPrintf("/dev/cpuset%stasks", default_cpuset.c_str()));
            }
        }
        std::string pid_str = std::to_string(getpid());
        for (const auto& file : writepid_files_) {
            if (!WriteStringToFile(pid_str, file)) {
                PLOG(ERROR) << "couldn't write " << pid_str << " to " << file;
            }
        }

        if (ioprio_class_ != IoSchedClass_NONE) {
            if (android_set_ioprio(getpid(), ioprio_class_, ioprio_pri_)) {
                PLOG(ERROR) << "failed to set pid " << getpid()
                            << " ioprio=" << ioprio_class_ << "," << ioprio_pri_;
            }
        }

        if (needs_console) {
            setsid();
            OpenConsole();
        } else {
            ZapStdio();
        }

        // As requested, set our gid, supplemental gids, uid, context, and
        // priority. Aborts on failure.
        SetProcessAttributes();

        if (!ExpandArgsAndExecv(args_)) {//调用execv函数,启动sevice子进程
            PLOG(ERROR) << "cannot execve('" << args_[0] << "')";
        }

        _exit(127);
    }

    if (pid < 0) {
        pid_ = 0;
        return ErrnoError() << "Failed to fork";
    }

    if (oom_score_adjust_ != -1000) {
        std::string oom_str = std::to_string(oom_score_adjust_);
        std::string oom_file = StringPrintf("/proc/%d/oom_score_adj", pid);
        if (!WriteStringToFile(oom_str, oom_file)) {
            PLOG(ERROR) << "couldn't write oom_score_adj: " << strerror(errno);
        }
    }

    time_started_ = boot_clock::now();
    pid_ = pid;
    flags_ |= SVC_RUNNING;
    start_order_ = next_start_order_++;
    process_cgroup_empty_ = false;

    errno = -createProcessGroup(uid_, pid_);
    if (errno != 0) {
        PLOG(ERROR) << "createProcessGroup(" << uid_ << ", " << pid_ << ") failed for service '"
                    << name_ << "'";
    } else {
        if (swappiness_ != -1) {
            if (!setProcessGroupSwappiness(uid_, pid_, swappiness_)) {
                PLOG(ERROR) << "setProcessGroupSwappiness failed";
            }
        }

        if (soft_limit_in_bytes_ != -1) {
            if (!setProcessGroupSoftLimit(uid_, pid_, soft_limit_in_bytes_)) {
                PLOG(ERROR) << "setProcessGroupSoftLimit failed";
            }
        }

        if (limit_in_bytes_ != -1) {
            if (!setProcessGroupLimit(uid_, pid_, limit_in_bytes_)) {
                PLOG(ERROR) << "setProcessGroupLimit failed";
            }
        }
    }

    NotifyStateChange("running");
    return Success();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
5.zygote概述

Zygote中文翻译为“受精卵”,正如其名,它主要用于孵化子进程。所有的Java应用程序进程及系统服务SystemServer进程都由Zygote
进程通过Linux的fork()函数孵化出来的,Zygote进程最初的名字不是“zygote”而是“app_process”。

Zygote是一个C/S模型,Zygote进程作为服务端,它主要负责创建Java虚拟机,加载系统资源,启动SystemServer进程,以及在后续运行过程中启动普通的应用程序,其他进程作为客户端向它发出“孵化”请求,而Zygote接收到这个请求后就“孵化”出一个新的进程。比如,当点击Launcher里的应用程序图标去启动一个新的应用程序进程时,这个请求会到达框架层的核心服务ActivityManagerService中,当AMS收到这个请求后,它通过调用Process类发出一个“孵化”子进程的Socket请求,而Zygote监听到这个请求后就立刻fork一个新的进程出来。

6.zygote 触发流程
6.1.init.zygoteXX.rc
import /init.${ro.zygote}.rc
  • 1

${ro.zygote} 会被替换成 ro.zyogte 的属性值,这个是由不同的硬件厂商自己定制的:

  • zygote32: zygote 进程对应的执行程序是 app_process (纯 32bit 模式)
  • zygote64: zygote 进程对应的执行程序是 app_process64 (纯 64bit 模式)
  • zygote32_64: 启动两个 zygote 进程 (名为 zygote 和 zygote_secondary),对应的执行程序分别
    是 app_process32 (主模式)
  • zygote64_32: 启动两个 zygote 进程 (名为 zygote 和 zygote_secondary),对应的执行程序分别
    是 app_process64 (主模式)、app_process32
6.2.start zygote

system\core\rootdir\init.rc L560

# It is recommended to put unnecessary data/ initialization from post-fs-data
# to start-zygote in device's init.rc to unblock zygote start.
on zygote-start && property:ro.crypto.state=unencrypted
    # A/B update verifier that marks a successful boot.
    exec_start update_verifier_nonencrypted
    start netd
    start zygote
    start zygote_secondary

on zygote-start && property:ro.crypto.state=unsupported
    # A/B update verifier that marks a successful boot.
    exec_start update_verifier_nonencrypted
    start netd
    start zygote
    start zygote_secondary

on zygote-start && property:ro.crypto.state=encrypted && property:ro.crypto.type=file
    # A/B update verifier that marks a successful boot.
    exec_start update_verifier_nonencrypted
    start netd
    start zygote
    start zygote_secondary
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

zygote-start 是在 on late-init 中触发的

# Mount filesystems and start core system services.
on late-init
    trigger early-fs

    # Mount fstab in init.{$device}.rc by mount_all command. Optional parameter
    # '--early' can be specified to skip entries with 'latemount'.
    # /system and /vendor must be mounted by the end of the fs stage,
    # while /data is optional.
    trigger fs
    trigger post-fs

    # Mount fstab in init.{$device}.rc by mount_all with '--late' parameter
    # to only mount entries with 'latemount'. This is needed if '--early' is
    # specified in the previous mount_all command on the fs stage.
    # With /system mounted and properties form /system + /factory available,
    # some services can be started.
    trigger late-fs

    # Now we can mount /data. File encryption requires keymaster to decrypt
    # /data, which in turn can only be loaded when system properties are present.
    trigger post-fs-data

    # Now we can start zygote for devices with file based encryption
    trigger zygote-start   zygote 在late-init中触发的

    # Load persist properties and override properties (if enabled) from /data.
    trigger load_persist_props_action

    # Remove a file to wake up anything waiting for firmware.
    trigger firmware_mounts_complete

    trigger early-boot
    trigger boot
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

\frameworks\base\cmds\app_process\Android.mk

app_process_src_files := \
    app_main.cpp \
LOCAL_MODULE:= app_process
LOCAL_MULTILIB := both
LOCAL_MODULE_STEM_32 := app_process32
LOCAL_MODULE_STEM_64 := app_process64
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
6.3.Zygote启动过程

入口:\frameworks\base\cmds\app_process\app_main.cpp

在app_main.cpp的main函数中,主要做的事情就是参数解析. 这个函数有两种启动模式:

  • 一种是zygote模式,也就是初始化zygote进程,传递的参数有–start-system-server --socket-name=zygote,前者表示启动SystemServer,后者指定socket的名称
  • 一种是application模式,也就是启动普通应用程序,传递的参数有class名字以及class带的参数

两者最终都是调用AppRuntime对象的start函数,加载ZygoteInit或RuntimeInit两个Java类,并将之前整理的参数传入进去

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1MwSAnKo-1663163010234)(/home/ms/snap/typora/72/.config/Typora/typora-user-images/image-20220914193328549.png)]

\frameworks\base\cmds\app_process\app_main.cpp main()L280

if (strcmp(arg, "--zygote") == 0) {
    zygote = true;
    niceName = ZYGOTE_NICE_NAME;
} else if (strcmp(arg, "--start-system-server") == 0) {
    startSystemServer = true;
} else if (strcmp(arg, "--application") == 0) {
    application = true;
} else if (strncmp(arg, "--nice-name=", 12) == 0) {
    niceName.setTo(arg + 12);
} else if (strncmp(arg, "--", 2) != 0) {
    className.setTo(arg);
    break;
} 

...
    
 if (zygote) {
        runtime.start("com.android.internal.os.ZygoteInit", args, zygote);   //启动zygote
    } else if (className) {
        runtime.start("com.android.internal.os.RuntimeInit", args, zygote);
    } else {
        fprintf(stderr, "Error: no class name or --zygote supplied.\n");
        app_usage();
        LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied.");
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

app_process 里面定义了三种应用程序类型:

  • Zygote: com.android.internal.os.ZygoteInit

  • System Server, 不单独启动,而是由Zygote启动

  • 其他指定类名的Java 程序

\frameworks\base\core\jni\androidRuntime.cpp

/*static*/ JavaVM* AndroidRuntime::mJavaVM = NULL;

AndroidRuntime::AndroidRuntime(char* argBlockStart, const size_t argBlockLength) :
        mExitWithoutCleanup(false),
        mArgBlockStart(argBlockStart),
        mArgBlockLength(argBlockLength)
{
    SkGraphics::Init();

    // Pre-allocate enough space to hold a fair number of options.
    mOptions.setCapacity(20);

    assert(gCurRuntime == NULL);        // one per process
    gCurRuntime = this;
}

AndroidRuntime::~AndroidRuntime()
{
}

/*
 * Register native methods using JNI.
 */
/*static*/ int AndroidRuntime::registerNativeMethods(JNIEnv* env,
    const char* className, const JNINativeMethod* gMethods, int numMethods)
{
    return jniRegisterNativeMethods(env, className, gMethods, numMethods);
}

void AndroidRuntime::setArgv0(const char* argv0, bool setProcName) {
    if (setProcName) {
        int len = strlen(argv0);
        if (len < 15) {
            pthread_setname_np(pthread_self(), argv0);
        } else {
            pthread_setname_np(pthread_self(), argv0 + len - 15);
        }
    }
    memset(mArgBlockStart, 0, mArgBlockLength);
    strlcpy(mArgBlockStart, argv0, mArgBlockLength);
}

status_t AndroidRuntime::callMain(const String8& className, jclass clazz,
    const Vector<String8>& args)
{
    JNIEnv* env;
    jmethodID methodId;

    ALOGD("Calling main entry %s", className.string());

    env = getJNIEnv();
    if (clazz == NULL || env == NULL) {
        return UNKNOWN_ERROR;
    }

    methodId = env->GetStaticMethodID(clazz, "main", "([Ljava/lang/String;)V");
    if (methodId == NULL) {
        ALOGE("ERROR: could not find method %s.main(String[])\n", className.string());
        return UNKNOWN_ERROR;
    }

    /*
     * We want to call main() with a String array with our arguments in it.
     * Create an array and populate it.
     */
    jclass stringClass;
    jobjectArray strArray;

    const size_t numArgs = args.size();
    stringClass = env->FindClass("java/lang/String");
    strArray = env->NewObjectArray(numArgs, stringClass, NULL);

    for (size_t i = 0; i < numArgs; i++) {
        jstring argStr = env->NewStringUTF(args[i].string());
        env->SetObjectArrayElement(strArray, i, argStr);
    }

    env->CallStaticVoidMethod(clazz, methodId, strArray);
    return NO_ERROR;
}

/*
 * The VM calls this through the "exit" hook.
 */
static void runtime_exit(int code)
{
    gCurRuntime->exit(code);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88

Runtime 是支撑程序运行的基础库,它是与语言绑定在一起的:

  • C Runtime:就是C standard lib, 也就是我们常说的libc
  • Java Runtime: 同样,Wiki将其重定向到” Java Virtual Machine”, 这里当然包括Java 的支撑类库(.jar)
  • AndroidRuntime: 显而易见,就是为Android应用运行所需的运行时环境
    • Dalvik VM: Android的Java VM, 解释运行Dex格式Java程序。每个进程运行一个虚拟机(什么叫运行虚拟机?说白了,就是一些C代码,不停的去解释Dex格式的二进制码(Bytecode),把它们转成机器码(Machine code),然后执行,当然,现在大多数的Java 虚拟机都支持JIT,也就是说,bytecode可能在运行前就已经被转换成机器码,从而大大提高了性能。过去一个普遍的认识是Java 程序比C,C++等静态编译的语言慢,但随着JIT的介入和发展,这个已经完全是过去时了,JIT的动态性运行允许虚拟机根据运行时环境,优化机器码的生成,在某些情况下,Java甚至可以比C/C++跑得更快,同时又兼具平台无关的特性。
    • Android的Java 类库, 大部分来自于 Apache Hamony, 开源的Java API 实现,如 java.lang,java.util, java.net. 但去除了AWT, Swing 等部件。
    • JNI: C和Java互调的接口。
    • Libc: Android也有很多C代码,自然少不了libc,注意的是,Android的libc叫 bionic C

\frameworks\base\core\jni\androidRuntime.cpp start() L1091

/*
 * Start the Android runtime.  This involves starting the virtual machine
 * and calling the "static void main(String[] args)" method in the class
 * named by "className".
 *
 * Passes the main function two arguments, the class name and the specified
 * options string.
 启动 Android 运行时。这涉及启动虚拟机并在“className”命名的类中调用“static void main(String[] args)”方法。向主函数传递两个参数,类名和指定的选项字符串。
 */
void AndroidRuntime::start(const char* className, const Vector<String8>& options, bool zygote)
{
    ALOGD(">>>>>> START %s uid %d <<<<<<\n",
            className != NULL ? className : "(unknown)", getuid());

    static const String8 startSystemServer("start-system-server");

    /*
     * 'startSystemServer == true' means runtime is obsolete and not run from
     * init.rc anymore, so we print out the boot start event here.
     */
    for (size_t i = 0; i < options.size(); ++i) {
        if (options[i] == startSystemServer) {
           /* track our progress through the boot sequence */
           const int LOG_BOOT_PROGRESS_START = 3000;
           LOG_EVENT_LONG(LOG_BOOT_PROGRESS_START,  ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
        }
    }

    const char* rootDir = getenv("ANDROID_ROOT");
    if (rootDir == NULL) {
        rootDir = "/system";
        if (!hasDir("/system")) {
            LOG_FATAL("No root directory specified, and /android does not exist.");
            return;
        }
        setenv("ANDROID_ROOT", rootDir, 1);
    }

    //const char* kernelHack = getenv("LD_ASSUME_KERNEL");
    //ALOGD("Found LD_ASSUME_KERNEL='%s'\n", kernelHack);

    /* start the virtual machine */
    JniInvocation jni_invocation;
    jni_invocation.Init(NULL);
    JNIEnv* env;
    if (startVm(&mJavaVM, &env, zygote) != 0) {
        return;
    }
    onVmCreated(env);

    /*
     * Register android functions.
     */
    if (startReg(env) < 0) {
        ALOGE("Unable to register all android natives\n");
        return;
    }

    /*
     * We want to call main() with a String array with arguments in it.
     * At present we have two arguments, the class name and an option string.
     * Create an array to hold them.
     */
    jclass stringClass;
    jobjectArray strArray;
    jstring classNameStr;

    stringClass = env->FindClass("java/lang/String");
    assert(stringClass != NULL);
    strArray = env->NewObjectArray(options.size() + 1, stringClass, NULL);
    assert(strArray != NULL);
    classNameStr = env->NewStringUTF(className);
    assert(classNameStr != NULL);
    env->SetObjectArrayElement(strArray, 0, classNameStr);

    for (size_t i = 0; i < options.size(); ++i) {
        jstring optionsStr = env->NewStringUTF(options.itemAt(i).string());
        assert(optionsStr != NULL);
        env->SetObjectArrayElement(strArray, i + 1, optionsStr);
    }

    /*
     * Start VM.  This thread becomes the main thread of the VM, and will
     * not return until the VM exits.
     */
    char* slashClassName = toSlashClassName(className != NULL ? className : "");
    jclass startClass = env->FindClass(slashClassName);
    if (startClass == NULL) {
        ALOGE("JavaVM unable to locate class '%s'\n", slashClassName);
        /* keep going */
    } else {
        jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
            "([Ljava/lang/String;)V");
        if (startMeth == NULL) {
            ALOGE("JavaVM unable to find main() in '%s'\n", className);
            /* keep going */
        } else {
            env->CallStaticVoidMethod(startClass, startMeth, strArray);

#if 0
            if (env->ExceptionCheck())
                threadExitUncaughtException(env);
#endif
        }
    }
    free(slashClassName);

    ALOGD("Shutting down VM\n");
    if (mJavaVM->DetachCurrentThread() != JNI_OK)
        ALOGW("Warning: unable to detach main thread\n");
    if (mJavaVM->DestroyJavaVM() != 0)
        ALOGW("Warning: VM did not shut down cleanly\n");
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113

Java虚拟机的启动大致做了以下一些事情:

  • 从property读取一系列启动参数。

  • 创建和初始化结构体全局对象(每个进程)gDVM,及对应与JavaVM和JNIEnv的内部结构体JavaVMExt, JNIEnvExt.

  • 初始化java虚拟机,并创建虚拟机线程

  • 注册系统的JNI,Java程序通过这些JNI接口来访问底层的资源。

  • 为Zygote的启动做最后的准备,包括设置SID/UID, 以及mount 文件系统

  • 返回JavaVM 给Native代码,这样它就可以向上访问Java的接口

\frameworks\base\core\jni\androidRuntime.cpp startVm()L596

int AndroidRuntime::startVm(JavaVM** pJavaVM, JNIEnv** pEnv, bool zygote)
{
    ...
        
/*
     * Initialize the VM.
     *
     * The JavaVM* is essentially per-process, and the JNIEnv* is per-thread.
     * If this call succeeds, the VM is ready, and we can start issuing
     * JNI calls.
     */
    if (JNI_CreateJavaVM(pJavaVM, pEnv, &initArgs) < 0) {
        ALOGE("JNI_CreateJavaVM failed\n");
        return -1;
    }

    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

\art\runtime\java_vm_ext.cc JNI_CreateJavaVM() L1139

extern "C" jint JNI_CreateJavaVM(JavaVM** p_vm, JNIEnv** p_env, void* vm_args) {
  ScopedTrace trace(__FUNCTION__);
  const JavaVMInitArgs* args = static_cast<JavaVMInitArgs*>(vm_args);
  if (JavaVMExt::IsBadJniVersion(args->version)) {
    LOG(ERROR) << "Bad JNI version passed to CreateJavaVM: " << args->version;
    return JNI_EVERSION;
  }
  RuntimeOptions options;
  for (int i = 0; i < args->nOptions; ++i) {
    JavaVMOption* option = &args->options[i];
    options.push_back(std::make_pair(std::string(option->optionString), option->extraInfo));
  }
  bool ignore_unrecognized = args->ignoreUnrecognized;
    //通过Runtime的create方法创建单例的Runtime对象
  if (!Runtime::Create(options, ignore_unrecognized)) {
    return JNI_ERR;
  }

  // Initialize native loader. This step makes sure we have
  // everything set up before we start using JNI.
  android::InitializeNativeLoader();

  Runtime* runtime = Runtime::Current();
  bool started = runtime->Start();
  if (!started) {
    delete Thread::Current()->GetJniEnv();
    delete runtime->GetJavaVM();
    LOG(WARNING) << "CreateJavaVM failed";
    return JNI_ERR;
  }

  *p_env = Thread::Current()->GetJniEnv();
  *p_vm = runtime->GetJavaVM();
  return JNI_OK;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

首先通过Runtime的create方法创建单例的Runtime对象,runtime负责提供art虚拟机的运行时环境,然后调用其init方法来初始化虚拟机

\art\runtime\runtime.cc Init() L1109

bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
L1255 创建java堆
     heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
                       runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
                       runtime_options.GetOrDefault(Opt::HeapMinFree),
                       runtime_options.GetOrDefault(Opt::HeapMaxFree),
                       runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
                       foreground_heap_growth_multiplier,
                       runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
                       runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
                       runtime_options.GetOrDefault(Opt::Image),
                       runtime_options.GetOrDefault(Opt::ImageInstructionSet),
                       // Override the collector type to CC if the read barrier config.
                       kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
                       kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
                                       : runtime_options.GetOrDefault(Opt::BackgroundGc),
                       runtime_options.GetOrDefault(Opt::LargeObjectSpace),
                       runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
                       runtime_options.GetOrDefault(Opt::ParallelGCThreads),
                       runtime_options.GetOrDefault(Opt::ConcGCThreads),
                       runtime_options.Exists(Opt::LowMemoryMode),
                       runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
                       runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
                       runtime_options.Exists(Opt::IgnoreMaxFootprint),
                       runtime_options.GetOrDefault(Opt::UseTLAB),
                       xgc_option.verify_pre_gc_heap_,
                       xgc_option.verify_pre_sweeping_heap_,
                       xgc_option.verify_post_gc_heap_,
                       xgc_option.verify_pre_gc_rosalloc_,
                       xgc_option.verify_pre_sweeping_rosalloc_,
                       xgc_option.verify_post_gc_rosalloc_,
                       xgc_option.gcstress_,
                       xgc_option.measure_,
                       runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
                       runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs));

  if (!heap_->HasBootImageSpace() && !allow_dex_file_fallback_) {
    LOG(ERROR) << "Dex file fallback disabled, cannot continue without image.";
    return false;
  }
    
   //L1408 创建java虚拟机
  std::string error_msg;
  java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
  if (java_vm_.get() == nullptr) {
    LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
    return false;
  }

  // Add the JniEnv handler.
  // TODO Refactor this stuff.
  java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);

  Thread::Startup();
    
    
    //L1424 连接主线程
  Thread* self = Thread::Attach("main", false, nullptr, false);
  CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
  CHECK(self != nullptr);

    // L1437 创建类连接器
    if (UNLIKELY(IsAotCompiler())) {
    class_linker_ = new AotClassLinker(intern_table_);
  } else {
    class_linker_ = new ClassLinker(intern_table_);
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • new gc::heap(),创建Heap对象,这是虚拟机管理对内存的起点。
  • new JavaVmExt(),创建Java虚拟机实例。
  • Thread::attach(),attach主线程
  • 创建ClassLinker
  • 初始化ClassLinker,成功attach到runtime环境后,创建ClassLinker实例负责管理java class到这里,虚拟机的创建和初始化就完成了

\art\runtime\threed.cc Attach() L775

template <typename PeerAction>
Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
  Runtime* runtime = Runtime::Current();
  if (runtime == nullptr) {
    LOG(ERROR) << "Thread attaching to non-existent runtime: " <<
        ((thread_name != nullptr) ? thread_name : "(Unnamed)");
    return nullptr;
  }
  Thread* self;
  {
    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    if (runtime->IsShuttingDownLocked()) {
      LOG(WARNING) << "Thread attaching while runtime is shutting down: " <<
          ((thread_name != nullptr) ? thread_name : "(Unnamed)");
      return nullptr;
    } else {
      Runtime::Current()->StartThreadBirth();
      self = new Thread(as_daemon);
      bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
      Runtime::Current()->EndThreadBirth();
      if (!init_success) {
        delete self;
        return nullptr;
      }
    }
  }

  self->InitStringEntryPoints();

  CHECK_NE(self->GetState(), kRunnable);
  self->SetState(kNative);

  // Run the action that is acting on the peer.
  if (!peer_action(self)) {
    runtime->GetThreadList()->Unregister(self);
    // Unregister deletes self, no need to do this here.
    return nullptr;
  }

  if (VLOG_IS_ON(threads)) {
    if (thread_name != nullptr) {
      VLOG(threads) << "Attaching thread " << thread_name;
    } else {
      VLOG(threads) << "Attaching unnamed thread.";
    }
    ScopedObjectAccess soa(self);
    self->Dump(LOG_STREAM(INFO));
  }

  {
    ScopedObjectAccess soa(self);
    runtime->GetRuntimeCallbacks()->ThreadStart(self);
  }

  return self;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56

除了系统的JNI接口(”javacore”, “nativehelper”), android framework 还有大量的Native实现,Android将所有这些接口一次性的通过start_reg()来完成

\frameworks\base\core\jni\androidRuntime.cpp startReg() L1511

/*
 * Register android native functions with the VM.
 */
/*static*/ int AndroidRuntime::startReg(JNIEnv* env)
{
    ATRACE_NAME("RegisterAndroidNatives");
    /*
     * This hook causes all future threads created in this process to be
     * attached to the JavaVM.  (This needs to go away in favor of JNI
     * Attach calls.)
     */
    androidSetCreateThreadFunc((android_create_thread_fn) javaCreateThreadEtc);

    ALOGV("--- registering native functions ---\n");

    /*
     * Every "register" function calls one or more things that return
     * a local reference (e.g. FindClass).  Because we haven't really
     * started the VM yet, they're all getting stored in the base frame
     * and never released.  Use Push/Pop to manage the storage.
     */
    env->PushLocalFrame(200);

    if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) {
        env->PopLocalFrame(NULL);
        return -1;
    }
    env->PopLocalFrame(NULL);

    //createJavaThread("fubar", quickTest, (void*) "hello");

    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

\system\core\libutils\Threads.cpp run() L662

status_t Thread::run(const char* name, int32_t priority, size_t stack)
{
    LOG_ALWAYS_FATAL_IF(name == nullptr, "thread name not provided to Thread::run");

    Mutex::Autolock _l(mLock);

    if (mRunning) {
        // thread already started
        return INVALID_OPERATION;
    }

    // reset status and exitPending to their default value, so we can
    // try again after an error happened (either below, or in readyToRun())
    mStatus = NO_ERROR;
    mExitPending = false;
    mThread = thread_id_t(-1);

    // hold a strong reference on ourself
    mHoldSelf = this;

    mRunning = true;

    bool res;
    if (mCanCallJava) {
        res = createThreadEtc(_threadLoop,
                this, name, priority, stack, &mThread);
    } else {
        res = androidCreateRawThreadEtc(_threadLoop,
                this, name, priority, stack, &mThread);
    }

    if (res == false) {
        mStatus = UNKNOWN_ERROR;   // something happened!
        mRunning = false;
        mThread = thread_id_t(-1);
        mHoldSelf.clear();  // "this" may have gone away after this.

        return UNKNOWN_ERROR;
    }

    // Do not refer to mStatus here: The thread is already running (may, in fact
    // already have exited with a valid mStatus result). The NO_ERROR indication
    // here merely indicates successfully starting the thread and does not
    // imply successful termination/execution.
    return NO_ERROR;

    // Exiting scope of mLock is a memory barrier and allows new thread to run
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

它们的区别在是是否能够调用Java端函数,普通的thread就是对pthread_create的简单封装

\system\core\libutils\Threads.cpp run() L117

int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
                               void *userData,
                               const char* threadName __android_unused,
                               int32_t threadPriority,
                               size_t threadStackSize,
                               android_thread_id_t *threadId)
{
 	...
    errno = 0;
    pthread_t thread;
    int result = pthread_create(&thread, &attr,
                    (android_pthread_entry)entryFunction, userData);
   ...
    return 1;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

\frameworks\base\core\jni\androidRuntime.cpp javaCreateThreadEtc() L1271

/*
 * This is invoked from androidCreateThreadEtc() via the callback
 * set with androidSetCreateThreadFunc().
 *
 * We need to create the new thread in such a way that it gets hooked
 * into the VM before it really starts executing.
 */
/*static*/ int AndroidRuntime::javaCreateThreadEtc(
                                android_thread_func_t entryFunction,
                                void* userData,
                                const char* threadName,
                                int32_t threadPriority,
                                size_t threadStackSize,
                                android_thread_id_t* threadId)
{
    void** args = (void**) malloc(3 * sizeof(void*));   // javaThreadShell must free
    int result;

    LOG_ALWAYS_FATAL_IF(threadName == nullptr, "threadName not provided to javaCreateThreadEtc");

    args[0] = (void*) entryFunction;
    args[1] = userData;
    args[2] = (void*) strdup(threadName);   // javaThreadShell must free

    result = androidCreateRawThreadEtc(AndroidRuntime::javaThreadShell, args,
        threadName, threadPriority, threadStackSize, threadId);
    return result;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

\frameworks\base\core\jni\androidRuntime.cpp javaThreadShell() L1242

/*
 * When starting a native thread that will be visible from the VM, we
 * bounce through this to get the right attach/detach action.
 * Note that this function calls free(args)
 */
/*static*/ int AndroidRuntime::javaThreadShell(void* args) {
    void* start = ((void**)args)[0];
    void* userData = ((void **)args)[1];
    char* name = (char*) ((void **)args)[2];        // we own this storage
    free(args);
    JNIEnv* env;
    int result;

    /* hook us into the VM */
    if (javaAttachThread(name, &env) != JNI_OK)
        return -1;

    /* start the thread running */
    result = (*(android_thread_func_t)start)(userData);

    /* unhook us */
    javaDetachThread();
    free(name);

    return result;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

\frameworks\base\core\jni\androidRuntime.cpp javaThreadShell() L1200

/*
 * Makes the current thread visible to the VM.
 *
 * The JNIEnv pointer returned is only valid for the current thread, and
 * thus must be tucked into thread-local storage.
 */
static int javaAttachThread(const char* threadName, JNIEnv** pEnv)
{
    JavaVMAttachArgs args;
    JavaVM* vm;
    jint result;

    vm = AndroidRuntime::getJavaVM();
    assert(vm != NULL);

    args.version = JNI_VERSION_1_4;
    args.name = (char*) threadName;
    args.group = NULL;

    result = vm->AttachCurrentThread(pEnv, (void*) &args);
    if (result != JNI_OK)
        ALOGI("NOTE: attach of thread '%s' failed\n", threadName);

    return result;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

\frameworks\base\core\java\com\android\internal\os\RuntimeInit.java main() L325

public static final void main(String[] argv) {
    enableDdms();
    if (argv.length == 2 && argv[1].equals("application")) {
        if (DEBUG) Slog.d(TAG, "RuntimeInit: Starting application");
        //将System.out 和 System.err 输出重定向到Android 的Log系统(定义在android.util.Log)
        redirectLogStreams();
    } else {
        if (DEBUG) Slog.d(TAG, "RuntimeInit: Starting tool");
    }
//commonInit(): 初始化了一下系统属性,其中最重要的一点就是设置了一个未捕捉异常的
//handler,当代码有任何未知异常,就会执行它,调试过Android代码的经常看到的”*** FATAL
//EXCEPTION IN SYSTEM PROCESS” 打印就出自这里
    commonInit();

    /*
     * Now that we're running in interpreted code, call back into native code
     * to run the system.
     */
    nativeFinishInit();

    if (DEBUG) Slog.d(TAG, "Leaving RuntimeInit!");
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

\frameworks\base\core\jni\androidRuntime.cpp nativeFinishInit() L225

/*
 * Code written in the Java Programming Language calls here from main().
 */
static void com_android_internal_os_RuntimeInit_nativeFinishInit(JNIEnv* env, jobject clazz)
{
    gCurRuntime->onStarted();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

\frameworks\base\cmds\app_process\app_main.cpp onStarted()L78

virtual void onStarted()
{
    sp<ProcessState> proc = ProcessState::self();
    ALOGV("App process: starting thread pool.\n");
    proc->startThreadPool();

    AndroidRuntime* ar = AndroidRuntime::getRuntime();
    ar->callMain(mClassName, mClass, mArgs);

    IPCThreadState::self()->stopProcess();
    hardware::IPCThreadState::self()->stopProcess();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

\frameworks\base\core\java\com\android\internal\os\ZygotInit.java main() L750

public static void main(String argv[]) {
    ZygoteServer zygoteServer = new ZygoteServer();  //新建Zygote服务器端

    // Mark zygote start. This ensures that thread creation will throw
    // an error.
    ZygoteHooks.startZygoteNoThreadCreation();

    // Zygote goes into its own process group.
    try {
        Os.setpgid(0, 0);
    } catch (ErrnoException ex) {
        throw new RuntimeException("Failed to setpgid(0,0)", ex);
    }

    final Runnable caller;
    try {
        // Report Zygote start time to tron unless it is a runtime restart
        if (!"1".equals(SystemProperties.get("sys.boot_completed"))) {
            MetricsLogger.histogram(null, "boot_zygote_init",
                    (int) SystemClock.elapsedRealtime());
        }

        String bootTimeTag = Process.is64Bit() ? "Zygote64Timing" : "Zygote32Timing";
        TimingsTraceLog bootTimingsTraceLog = new TimingsTraceLog(bootTimeTag,
                Trace.TRACE_TAG_DALVIK);
        bootTimingsTraceLog.traceBegin("ZygoteInit");
        RuntimeInit.enableDdms();

        boolean startSystemServer = false;
        String socketName = "zygote";  //Dalvik VM进程系统
        String abiList = null;
        boolean enableLazyPreload = false;
        for (int i = 1; i < argv.length; i++) {
            //app_main.cpp中传的start-system-server参数吗,在这里用到了
            if ("start-system-server".equals(argv[i])) {
                startSystemServer = true;
            } else if ("--enable-lazy-preload".equals(argv[i])) {
                enableLazyPreload = true;
            } else if (argv[i].startsWith(ABI_LIST_ARG)) {
                abiList = argv[i].substring(ABI_LIST_ARG.length());
            } else if (argv[i].startsWith(SOCKET_NAME_ARG)) {
                socketName = argv[i].substring(SOCKET_NAME_ARG.length());
            } else {
                throw new RuntimeException("Unknown command line argument: " + argv[i]);
            }
        }

        if (abiList == null) {
            throw new RuntimeException("No ABI list supplied.");
        }

        zygoteServer.registerServerSocketFromEnv(socketName);
        // In some configurations, we avoid preloading resources and classes eagerly.
        // In such cases, we will preload things prior to our first fork.
        // 在有些情况下我们需要在第一个fork之前进行预加载资源
        if (!enableLazyPreload) {
            bootTimingsTraceLog.traceBegin("ZygotePreload");
            EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,
                SystemClock.uptimeMillis());
            preload(bootTimingsTraceLog);
            EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,
                SystemClock.uptimeMillis());
            bootTimingsTraceLog.traceEnd(); // ZygotePreload
        } else {
            Zygote.resetNicePriority();
        }

        // Do an initial gc to clean up after startup
        bootTimingsTraceLog.traceBegin("PostZygoteInitGC");
        gcAndFinalize();//主动进行一次资源GC
        bootTimingsTraceLog.traceEnd(); // PostZygoteInitGC

        bootTimingsTraceLog.traceEnd(); // ZygoteInit
        // Disable tracing so that forked processes do not inherit stale tracing tags from
        // Zygote.
        Trace.setTracingEnabled(false, 0);

        Zygote.nativeSecurityInit();

        // Zygote process unmounts root storage spaces.
        Zygote.nativeUnmountStorageOnInit();

        ZygoteHooks.stopZygoteNoThreadCreation();

        if (startSystemServer) {
            Runnable r = forkSystemServer(abiList, socketName, zygoteServer);

            // {@code r == null} in the parent (zygote) process, and {@code r != null} in the
            // child (system_server) process.
            if (r != null) {
                r.run();
                return;
            }
        }

        Log.i(TAG, "Accepting command socket connections");

        // The select loop returns early in the child process after a fork and
        // loops forever in the zygote.
        caller = zygoteServer.runSelectLoop(abiList);
    } catch (Throwable ex) {
        Log.e(TAG, "System zygote died with exception", ex);
        throw ex;
    } finally {
        zygoteServer.closeServerSocket();
    }

    // We're in the child process and have exited the select loop. Proceed to execute the
    // command.
    if (caller != null) {
        caller.run();
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113

preload() 的作用就是提前将需要的资源加载到VM中,比如class、resource等

\frameworks\base\core\java\com\android\internal\os\ZygotInit.java preload() L123

static void preload(TimingsTraceLog bootTimingsTraceLog) {
    Log.d(TAG, "begin preload");
    bootTimingsTraceLog.traceBegin("BeginIcuCachePinning");
    beginIcuCachePinning();
    bootTimingsTraceLog.traceEnd(); // BeginIcuCachePinning
    bootTimingsTraceLog.traceBegin("PreloadClasses");
    preloadClasses();
    bootTimingsTraceLog.traceEnd(); // PreloadClasses
    bootTimingsTraceLog.traceBegin("PreloadResources");
    preloadResources();
    bootTimingsTraceLog.traceEnd(); // PreloadResources
    Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadAppProcessHALs");
    nativePreloadAppProcessHALs();
    Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
    Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadOpenGL");
    preloadOpenGL();
    Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
    preloadSharedLibraries();
    preloadTextResources();
    // Ask the WebViewFactory to do any initialization that must run in the zygote process,
    // for memory sharing purposes.
    WebViewFactory.prepareWebViewInZygote();
    endIcuCachePinning();
    warmUpJcaProviders();
    Log.d(TAG, "end preload");

    sPreloadComplete = true;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

preloadClassess 将framework.jar里的preloaded-classes 定义的所有class load到内存里,preloaded-classes 编译Android后可以在framework/base下找到。而preloadResources 将系统的Resource(不是在用户apk里定义的resource)load到内存。资源preload到Zygoted的进程地址空间,所有fork的子进程将共享这份空间而无需重新load, 这大大减少了应用程序的启动时间,但反过来增加了系统的启动时间。通过对preload 类和资源数目进行调整可以加快系统启动。Preload也是Android启动最耗时的部分之一

\frameworks\base\core\java\com\android\internal\os\ZygotInit.java gcAndFinalize() L439

/**
 * Runs several special GCs to try to clean up a few generations of
 * softly- and final-reachable objects, along with any other garbage.
 * This is only useful just before a fork().
 运行几个特殊的 GC 以尝试清理几代软可到达和最终可到达的对象,以及任何其他垃圾。这仅在 fork() 之前有用。
 */
/*package*/ static void gcAndFinalize() {
    final VMRuntime runtime = VMRuntime.getRuntime();

    /* runFinalizationSync() lets finalizers be called in Zygote,
     * which doesn't have a HeapWorker thread.
     */
    System.gc();
    runtime.runFinalizationSync();
    System.gc();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

gc()调用只是通知VM进行垃圾回收,是否回收,什么时候回收全由VM内部算法决定。GC的回收有一个复杂的状态机控制,通过多次调用,可以使得尽可能多的资源得到回收。gc()必须在fork之前完成(接下来的StartSystemServer就会有fork操作),这样将来被复制出来的子进程才能有尽可能少的垃圾内存没有释放

\frameworks\base\core\java\com\android\internal\os\ZygotInit.java forkSystemServer L657

/**
 * Prepare the arguments and forks for the system server process.
 *
 * Returns an {@code Runnable} that provides an entrypoint into system_server code in the
 * child process, and {@code null} in the parent.
 为系统服务器进程准备参数和分叉。返回一个 {@code Runnable},它为子进程中的 system_server 代码和父进程中的 {@code null} 提供入口点
 */
private static Runnable forkSystemServer(String abiList, String socketName,
        ZygoteServer zygoteServer) {
    long capabilities = posixCapabilitiesAsBits(
        OsConstants.CAP_IPC_LOCK,
        OsConstants.CAP_KILL,
        OsConstants.CAP_NET_ADMIN,
        OsConstants.CAP_NET_BIND_SERVICE,
        OsConstants.CAP_NET_BROADCAST,
        OsConstants.CAP_NET_RAW,
        OsConstants.CAP_SYS_MODULE,
        OsConstants.CAP_SYS_NICE,
        OsConstants.CAP_SYS_PTRACE,
        OsConstants.CAP_SYS_TIME,
        OsConstants.CAP_SYS_TTY_CONFIG,
        OsConstants.CAP_WAKE_ALARM,
        OsConstants.CAP_BLOCK_SUSPEND
    );
    /* Containers run without some capabilities, so drop any caps that are not available. */
    StructCapUserHeader header = new StructCapUserHeader(
            OsConstants._LINUX_CAPABILITY_VERSION_3, 0);
    StructCapUserData[] data;
    try {
        data = Os.capget(header);
    } catch (ErrnoException ex) {
        throw new RuntimeException("Failed to capget()", ex);
    }
    capabilities &= ((long) data[0].effective) | (((long) data[1].effective) << 32);

    /* Hardcoded command line to start the system server 硬编码命令行启动系统服务器 //启动SystemServer的命令行,部分参数写死 */
    String args[] = {
        "--setuid=1000",
        "--setgid=1000",
        "--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1021,1023,1024,1032,1065,3001,3002,3003,3006,3007,3009,3010",
        "--capabilities=" + capabilities + "," + capabilities,
        "--nice-name=system_server",
        "--runtime-args",
        "--target-sdk-version=" + VMRuntime.SDK_VERSION_CUR_DEVELOPMENT,
        "com.android.server.SystemServer",
    };
    ZygoteConnection.Arguments parsedArgs = null;

    int pid;

    try {
        parsedArgs = new ZygoteConnection.Arguments(args);
        ZygoteConnection.applyDebuggerSystemProperty(parsedArgs);
        ZygoteConnection.applyInvokeWithSystemProperty(parsedArgs);

        boolean profileSystemServer = SystemProperties.getBoolean(
                "dalvik.vm.profilesystemserver", false);
        if (profileSystemServer) {
            parsedArgs.runtimeFlags |= Zygote.PROFILE_SYSTEM_SERVER;
        }

        /* Request to fork the system server process  创建 system server 进程 */
        pid = Zygote.forkSystemServer(
                parsedArgs.uid, parsedArgs.gid,
                parsedArgs.gids,
                parsedArgs.runtimeFlags,
                null,
                parsedArgs.permittedCapabilities,
                parsedArgs.effectiveCapabilities);
    } catch (IllegalArgumentException ex) {
        throw new RuntimeException(ex);
    }

    /* For child process */
    if (pid == 0) {
        if (hasSecondZygote(abiList)) {
            waitForSecondaryZygote(socketName);
        }

        zygoteServer.closeServerSocket();
        return handleSystemServerProcess(parsedArgs);
    }

    return null;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85

ZygoteInit.forkSystemServer() 方法fork 出一个新的进程,这个进程就是SystemServer进程。fork出来的子进程在handleSystemServerProcess 里开始初始化工作,主要工作分为:

  • prepareSystemServerProfile()方法中将SYSTEMSERVERCLASSPATH中的AppInfo加载到VM中。

  • 判断fork args中是否有invokWith参数,如果有则进行WrapperInit.execApplication。如果没有则调用

\frameworks\base\core\java\com\android\internal\os\ZygoteInit.java handleSystemServerProcess() L453

/**
 * Finish remaining work for the newly forked system server process.
 */
private static Runnable handleSystemServerProcess(ZygoteConnection.Arguments parsedArgs) {
    // set umask to 0077 so new files and directories will default to owner-only permissions.
    Os.umask(S_IRWXG | S_IRWXO);

    if (parsedArgs.niceName != null) {
        Process.setArgV0(parsedArgs.niceName);
    }

    final String systemServerClasspath = Os.getenv("SYSTEMSERVERCLASSPATH");
    if (systemServerClasspath != null) {
        performSystemServerDexOpt(systemServerClasspath);
        // Capturing profiles is only supported for debug or eng builds since selinux normally
        // prevents it.
        boolean profileSystemServer = SystemProperties.getBoolean(
                "dalvik.vm.profilesystemserver", false);
        if (profileSystemServer && (Build.IS_USERDEBUG || Build.IS_ENG)) {
            try {//将SYSTEMSERVERCLASSPATH中的AppInfo加载到VM中
                prepareSystemServerProfile(systemServerClasspath);
            } catch (Exception e) {
                Log.wtf(TAG, "Failed to set up system server profile", e);
            }
        }
    }

    if (parsedArgs.invokeWith != null) {
        String[] args = parsedArgs.remainingArgs;
        // If we have a non-null system server class path, we'll have to duplicate the
        // existing arguments and append the classpath to it. ART will handle the classpath
        // correctly when we exec a new process.
        if (systemServerClasspath != null) {
            String[] amendedArgs = new String[args.length + 2];
            amendedArgs[0] = "-cp";
            amendedArgs[1] = systemServerClasspath;
            System.arraycopy(args, 0, amendedArgs, 2, args.length);
            args = amendedArgs;
        }
		//判断fork args中是否有invokWith参数,如果有则进行  WrapperInit.execApplication
        WrapperInit.execApplication(parsedArgs.invokeWith,
                parsedArgs.niceName, parsedArgs.targetSdkVersion,
                VMRuntime.getCurrentInstructionSet(), null, args);

        throw new IllegalStateException("Unexpected return from WrapperInit.execApplication");
    } else {
        ClassLoader cl = null;
        if (systemServerClasspath != null) {
            cl = createPathClassLoader(systemServerClasspath, parsedArgs.targetSdkVersion);

            Thread.currentThread().setContextClassLoader(cl);
        }

        /*
         * Pass the remaining arguments to SystemServer. 将剩余的参数传递给 SystemServer
         * 调用zygoteInit
         */
        return ZygoteInit.zygoteInit(parsedArgs.targetSdkVersion, parsedArgs.remainingArgs, cl);
    }

    /* should never reach here */
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62

\frameworks\base\core\java\com\android\internal\os\RuntimeInit.java applicationInit() L345

protected static Runnable applicationInit(int targetSdkVersion, String[] argv,
        ClassLoader classLoader) {
    // If the application calls System.exit(), terminate the process
    // immediately without running any shutdown hooks.  It is not possible to
    // shutdown an Android application gracefully.  Among other things, the
    // Android runtime shutdown hooks close the Binder driver, which can cause
    // leftover running threads to crash before the process actually exits.
   // 如果应用程序调用 System.exit(),立即终止进程而不运行任何关闭挂钩。无法正常关闭 Android 应用程序。除此之外,Android 运行时关闭挂钩会关闭 Binder 驱动程序,这可能会导致剩余运行的线程在进程实际退出之前崩溃
    nativeSetExitWithoutCleanup(true);

    // We want to be fairly aggressive about heap utilization, to avoid
    // holding on to a lot of memory that isn't needed.
    VMRuntime.getRuntime().setTargetHeapUtilization(0.75f);
    VMRuntime.getRuntime().setTargetSdkVersion(targetSdkVersion);

    final Arguments args = new Arguments(argv);

    // The end of of the RuntimeInit event (see #zygoteInit).
    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);

    // Remaining arguments are passed to the start class's static main
    return findStaticMain(args.startClass, args.startArgs, classLoader);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

\frameworks\base\core\java\com\android\internal\os\RuntimeInit.java findStaticMain() L287

/**
 * Invokes a static "main(argv[]) method on class "className".
 * Converts various failing exceptions into RuntimeExceptions, with
 * the assumption that they will then cause the VM instance to exit.
 * 在类“className”上调用静态“main(argv[]) 方法。将各种失败的异常转换为 RuntimeExceptions,假设它们将导致 VM 实例退出。
 * @param className Fully-qualified class name
 * @param argv Argument vector for main()
 * @param classLoader the classLoader to load {@className} with
 */
protected static Runnable findStaticMain(String className, String[] argv,
        ClassLoader classLoader) {
    Class<?> cl;

    try {
        cl = Class.forName(className, true, classLoader);
    } catch (ClassNotFoundException ex) {
        throw new RuntimeException(
                "Missing class when invoking static main " + className,
                ex);
    }

    Method m;
    try {
        m = cl.getMethod("main", new Class[] { String[].class });
    } catch (NoSuchMethodException ex) {
        throw new RuntimeException(
                "Missing static main on " + className, ex);
    } catch (SecurityException ex) {
        throw new RuntimeException(
                "Problem getting static main on " + className, ex);
    }

    int modifiers = m.getModifiers();
    if (! (Modifier.isStatic(modifiers) && Modifier.isPublic(modifiers))) {
        throw new RuntimeException(
                "Main method is not public and static on " + className);
    }

    /*
     * This throw gets caught in ZygoteInit.main(), which responds
     * by invoking the exception's run() method. This arrangement
     * clears up all the stack frames that were required in setting
     * up the process.
     */
    return new MethodAndArgsCaller(m, argv);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46

很明显这是一个耗时操作所以使用线程来完成:

\frameworks\base\core\java\com\android\internal\os\RuntimeInit.java MethodAndArgsCaller L479

/**
 * Helper class which holds a method and arguments and can call them. This is used as part of
 * a trampoline to get rid of the initial process setup stack frames.
 */
static class MethodAndArgsCaller implements Runnable {
    /** method to call */
    private final Method mMethod;

    /** argument array */
    private final String[] mArgs;

    public MethodAndArgsCaller(Method method, String[] args) {
        mMethod = method;
        mArgs = args;
    }

    public void run() {
        try {
            mMethod.invoke(null, new Object[] { mArgs });
        } catch (IllegalAccessException ex) {
            throw new RuntimeException(ex);
        } catch (InvocationTargetException ex) {
            Throwable cause = ex.getCause();
            if (cause instanceof RuntimeException) {
                throw (RuntimeException) cause;
            } else if (cause instanceof Error) {
                throw (Error) cause;
            }
            throw new RuntimeException(ex);
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
7.System Server 启动流程

System Server 是Zygote fork 的第一个Java 进程, 这个进程非常重要,因为他们有很多的系统线程,提供所有核心的系统服务

WindowManager, ActivityManager,它们都是运行在system_server的进程里。还有很多“Binder-x”的线程,它们是各个Service为了响应应用程序远程调用请求而创建的。除此之外,还有很多内部的线程,比如 ”UI thread”, “InputReader”, “InputDispatch” 等等,现在我们只关心System Server是如何创建起来的。

SystemServer的main() 函数。

/**
 * The main entry point from zygote.
 * zygote 的主要入口点。
 */
public static void main(String[] args) {
    new SystemServer().run();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

记下来我分成4部分详细分析SystemServer run方法的初始化流程:

  • 初始化必要的SystemServer环境参数,比如系统时间、默认时区、语言、load一些Library等等,
  • 初始化Looper,我们在主线程中使用到的looper就是在SystemServer中进行初始化的
  • 初始化Context,只有初始化一个Context才能进行启动Service等操作,这里看一下源码:
 // Initialize the system context. 初始化系统上下文。
private void createSystemContext() {
    ActivityThread activityThread = ActivityThread.systemMain();
    mSystemContext = activityThread.getSystemContext();
    mSystemContext.setTheme(DEFAULT_SYSTEM_THEME);

    final Context systemUiContext = activityThread.getSystemUiContext();
    systemUiContext.setTheme(DEFAULT_SYSTEM_THEME);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

ActivityThread就是这个时候生成的

继续看ActivityThread中如何生成Context:

    public ContextImpl getSystemContext() {
        synchronized(this) {
            if (mSystemContext == null) {
                ContextImpl context = ContextImpl.createSystemContext(this);
                LoadedApk info = new LoadedApk(this, "android", context, (ApplicationInfo)null, CompatibilityInfo.DEFAULT_COMPATIBILITY_INFO);
                context.init(info, (IBinder)null, this);
                context.getResources().updateConfiguration(this.getConfiguration(), this.getDisplayMetricsLocked(0, CompatibilityInfo.DEFAULT_COMPATIBILITY_INFO));
                mSystemContext = context;
            }
        }

        return mSystemContext;
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

ContextImpl是Context类的具体实现,createContext的方法:

static ContextImpl createSystemContext(ActivityThread mainThread) {
    ContextImpl context = new ContextImpl();
    context.init(Resources.getSystem(), mainThread, Process.myUserHandle());
    return context;
}
  • 1
  • 2
  • 3
  • 4
  • 5

初始化SystemServiceManager,用来管理启动service,SystemServiceManager中封装了启动Service的startService方法启动系统必要的Service,启动service的流程又分成三步走:

// Start services.
try {
    traceBeginAndSlog("StartServices");

    /*引导服务启动*/
    startBootstrapServices();
    startCoreServices();
    startOtherServices();
    SystemServerInitThreadPool.shutdown();
} catch (Throwable ex) {
    Slog.e("System", "******************************************");
    Slog.e("System", "************ Failure starting system services", ex);
    throw ex;
} finally {
    traceEnd();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

启动BootstrapServices,就是系统必须需要的服务,这些服务直接耦合性很高,所以干脆就放在一个方法里面一起启动,比如PowerManagerService、RecoverySystemService、DisplayManagerService、ActivityManagerService等等启动以基本的核心Service,很简单,只有三个BatteryService、
UsageStatsService、WebViewUpdateService启动其它需要用到的Service,比如NetworkScoreService、AlarmManagerService

Sytem Server 责任重大重任,出问题了zygote。Zygote会默默的在后台凝视这自己的大儿子,一旦发现SystemServer 挂掉了,将其回收,然后将自己杀掉,重新开始新的一生, 可怜天下父母心啊。这段实现在代码 :com_android_internal_os_Zygote.cpp 中,systemServer 和zygote 共存亡

// This signal handler is for zygote mode, since the zygote must reap its children
//此信号处理程序用于 zygote 模式,因为 zygote 必须收获其子代
static void SigChldHandler(int /*signal_number*/) {
  pid_t pid;
  int status;

  // It's necessary to save and restore the errno during this function.
  // Since errno is stored per thread, changing it here modifies the errno
  // on the thread on which this signal handler executes. If a signal occurs
  // between a call and an errno check, it's possible to get the errno set
  // here.
  // See b/23572286 for extra information.
  int saved_errno = errno;

  while ((pid = waitpid(-1, &status, WNOHANG)) > 0) {
     // Log process-death status that we care about.  In general it is
     // not safe to call LOG(...) from a signal handler because of
     // possible reentrancy.  However, we know a priori that the
     // current implementation of LOG() is safe to call from a SIGCHLD
     // handler in the zygote process.  If the LOG() implementation
     // changes its locking strategy or its use of syscalls within the
     // lazy-init critical section, its use here may become unsafe.
    if (WIFEXITED(status)) {
      ALOGI("Process %d exited cleanly (%d)", pid, WEXITSTATUS(status));
    } else if (WIFSIGNALED(status)) {
      ALOGI("Process %d exited due to signal (%d)", pid, WTERMSIG(status));
      if (WCOREDUMP(status)) {
        ALOGI("Process %d dumped core.", pid);
      }
    }

    // If the just-crashed process is the system_server, bring down zygote
    // so that it is restarted by init and system server will be restarted
    // from there.  如果刚刚崩溃的进程是 system_server,则关闭 zygote 以便它由 init 重新启动,系统服务器将从那里重新启动。
    //如果挂掉的是SystemServer
    if (pid == gSystemServerPid) {
      ALOGE("Exit zygote because system server (%d) has terminated", pid);
      kill(getpid(), SIGKILL);  //zygote 自杀 重启
    }
  }

  // Note that we shouldn't consider ECHILD an error because
  // the secondary zygote might have no children left to wait for.
  if (pid < 0 && errno != ECHILD) {
    ALOGW("Zygote SIGCHLD error in waitpid: %s", strerror(errno));
  }

  errno = saved_errno;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

总结:

  • init 根据init.rc 运行 app_process, 并携带‘–zygote’ 和 ’–startSystemServer’ 参数。
  • AndroidRuntime.cpp::start() 里将启动JavaVM,并且注册所有framework相关的系统JNI接口。
  • 第一次进入Java世界,运行ZygoteInit.java::main() 函数初始化Zygote. Zygote 并创建Socket的server 端。
  • 然后fork一个新的进程并在新进程里初始化SystemServer. Fork之前,Zygote是preload常用的Java类库,以及系统的resources,同时GC()清理内存空间,为子进程省去重复的工作。
  • SystemServer 里将所有的系统Service初始化,包括ActivityManager 和 WindowManager, 他们是应用程序运行起来的前提。
  • 依次同时,Zygote监听服务端Socket,等待新的应用启动请求。
  • ActivityManager ready 之后寻找系统的“Startup” Application, 将请求发给Zygote。
  • Zygote收到请求后,fork出一个新的进程。
  • Zygote监听并处理SystemServer 的 SIGCHID 信号,一旦System Server崩溃,立即将自己杀死。init会重启Zygote.

什么情况下Zygote进程会重启呢?

  • servicemanager进程被杀;
  • (onresart)surfaceflinger进程被杀;
  • (onresart)Zygote进程自己被杀;
  • (oneshot=false)system_server进程被杀; (waitpid)

8.fork 函数

8.1 fork介绍
pid_t fork(void)
  • 1

参数:不需要参数

需要的头文件 <sys/types.h> 和 <unistd.h>

返回值分两种情况:

  • 返回0表示成功创建子进程,并且接下来进入子进程执行流程
  • 返回PID(>0),成功创建子进程,并且继续执行父进程流程代码
  • 返回非正数(<0),创建子进程失败,失败原因主要有:
  • 进程数超过系统所能创建的上限,errno会被设置为EAGAIN系统内存不足,errno会被设置为ENOMEM

使用 fork() 函数得到的子进程是父进程的一个复制品,它从父进程处继承了整个进程的地址空间:包括进程上下文(进程执行活动全过程的静态描述)、进程堆栈、打开的文件描述符、信号控制设定、进程优先级、进程组号等。子进程所独有的只有它的进程号,计时器等(只有小量信息)。因此,使用 fork() 函数的代价是很大的

子进程与父进程的区别:

  • 除了文件锁以外,其他的锁都会被继承
  • 各自的进程ID和父进程ID不同
  • 子进程的未决告警被清除;
  • 子进程的未决信号集设置为空集。
8.2.写时拷贝 (copy- on-write)

Linux 的 fork() 使用是通过写时拷贝 (copy- on-write) 实现。写时拷贝是一种可以推迟甚至避免拷贝数据的技术。内核此时并不复制整个进程的地址空间,而是让父子进程共享同一个地址空间。只用在需要写入的时候才会复制地址空间,从而使各个进行拥有各自的地址空间。也就是说,资源的复制是在需要写入的时候才会进行,在此之前,只有以只读方式共享。

8.3.孤儿进程、僵尸进程

fork系统调用之后,父子进程将交替执行,执行顺序不定。如果父进程先退出,子进程还没退出那么子进程的父进程将变为init进程(托孤给了init进程)。(注:任何一个进程都必须有父进程)如果子进程先退出,父进程还没退出,那么子进程必须等到父进程捕获到了子进程的退出状态才真正结束,否则这个时候子进程就成为僵进程(僵尸进程:只保留一些退出信息供父进程查询)

8.4.多线程进程的Fork调用

在 POSIX 标准中,fork 的行为是这样的:复制整个用户空间的数据(通常使用 copy-on-write 的策略,所以可以实现的速度很快)以及所有系统对象,然后仅复制当前线程到子进程。这里:所有父进程中别的线程,到了子进程中都是突然蒸发掉的。

假设这么一个环境,在 fork 之前,有一个子线程 lock 了某个锁,获得了对锁的所有权。fork 以后,在子进程中,所有的额外线程都人间蒸发了。而锁却被正常复制了,在子进程看来,这个锁没有主人,所以没有任何人可以对它解锁。当子进程想 lock 这个锁时,不再有任何手段可以解开了。程序发生死锁

9.系统启动的相关疑问总结
9.1.简述Android 系统启动流程

当按电源键触发开机,首先会从 ROM 中预定义的地方加载引导程序 BootLoader 到 RAM 中,并执行 BootLoader 程序启动 Linux Kernel, 然后启动用户级别的第一个进程: init 进程。init 进程会解析init.rc 脚本做一些初始化工作,包括挂载文件系统、创建工作目录以及启动系统服务进程等,其中系统服务进程包括 Zygote、service manager、media 等。在 Zygote 中会进一步去启动 system_server 进程,然后在 system_server 进程中会启动 AMS、WMS、PMS 等服务,等这些服务启动之后,AMS 中就会打开 Launcher 应用的 home Activity,最终就看到了手机的 “桌面”。

9.2.system_server 为什么要在 Zygote 中启动,而不是由 init 直接启动呢

Zygote 作为一个孵化器,可以提前加载一些资源,这样 fork() 时基于 Copy-On-Write 机制创建的其他进程就能直接使用这些资源,而不用重新加载。比如 system_server 就可以直接使用 Zygote 中的 JNI函数、共享库、常用的类、以及主题资源。

9.3.为什么要专门使用 Zygote 进程去孵化应用进程,而不是让 system_server 去孵化呢?

首先 system_server 相比 Zygote 多运行了 AMS、WMS 等服务,这些对一个应用程序来说是不需要的。另外进程的 fork() 对多线程不友好,仅会将发起调用的线程拷贝到子进程,这可能会导致死锁,而system_server 中肯定是有很多线程的。

9.4.描述下是怎么导致死锁的

在 POSIX 标准中,fork 的行为是这样的:复制整个用户空间的数据(通常使用 copy-on-write 的策略,所以可以实现的速度很快)以及所有系统对象,然后仅复制当前线程到子进程。这里:所有父进程中别的线程,到了子进程中都是突然蒸发掉的

对于锁来说,从 OS 看,每个锁有一个所有者,即最后一次 lock 它的线程。假设这么一个环境,在 fork之前,有一个子线程 lock 了某个锁,获得了对锁的所有权。fork 以后,在子进程中,所有的额外线程都人间蒸发了。而锁却被正常复制了,在子进程看来,这个锁没有主人,所以没有任何人可以对它解锁。当子进程想 lock 这个锁时,不再有任何手段可以解开了。程序发生死锁。

9.5.Zygote 为什么不采用 Binder 机制进行 IPC 通信

Binder 机制中存在 Binder 线程池,是多线程的,如果 Zygote 采用 Binder 的话就存在上面说的fork() 与 多线程的问题了。其实严格来说,Binder 机制不一定要多线程,所谓的 Binder 线程只不过是在循环读取 Binder 驱动的消息而已,只注册一个 Binder 线程也是可以工作的,比如 service manager就是这样的。实际上 Zygote 尽管没有采取 Binder 机制,它也不是单线程的,但它在 fork() 前主动停止了其他线程,fork() 后重新启动了。进入子进程执行流程

  • 返回PID(>0),成功创建子进程,并且继续执行父进程流程代码
  • 返回非正数(<0),创建子进程失败,失败原因主要有:
  • 进程数超过系统所能创建的上限,errno会被设置为EAGAIN系统内存不足,errno会被设置为ENOMEM

使用 fork() 函数得到的子进程是父进程的一个复制品,它从父进程处继承了整个进程的地址空间:包括进程上下文(进程执行活动全过程的静态描述)、进程堆栈、打开的文件描述符、信号控制设定、进程优先级、进程组号等。子进程所独有的只有它的进程号,计时器等(只有小量信息)。因此,使用 fork() 函数的代价是很大的

子进程与父进程的区别:

  • 除了文件锁以外,其他的锁都会被继承
  • 各自的进程ID和父进程ID不同
  • 子进程的未决告警被清除;
  • 子进程的未决信号集设置为空集。
8.2.写时拷贝 (copy- on-write)

Linux 的 fork() 使用是通过写时拷贝 (copy- on-write) 实现。写时拷贝是一种可以推迟甚至避免拷贝数据的技术。内核此时并不复制整个进程的地址空间,而是让父子进程共享同一个地址空间。只用在需要写入的时候才会复制地址空间,从而使各个进行拥有各自的地址空间。也就是说,资源的复制是在需要写入的时候才会进行,在此之前,只有以只读方式共享。

8.3.孤儿进程、僵尸进程

fork系统调用之后,父子进程将交替执行,执行顺序不定。如果父进程先退出,子进程还没退出那么子进程的父进程将变为init进程(托孤给了init进程)。(注:任何一个进程都必须有父进程)如果子进程先退出,父进程还没退出,那么子进程必须等到父进程捕获到了子进程的退出状态才真正结束,否则这个时候子进程就成为僵进程(僵尸进程:只保留一些退出信息供父进程查询)

8.4.多线程进程的Fork调用

在 POSIX 标准中,fork 的行为是这样的:复制整个用户空间的数据(通常使用 copy-on-write 的策略,所以可以实现的速度很快)以及所有系统对象,然后仅复制当前线程到子进程。这里:所有父进程中别的线程,到了子进程中都是突然蒸发掉的。

假设这么一个环境,在 fork 之前,有一个子线程 lock 了某个锁,获得了对锁的所有权。fork 以后,在子进程中,所有的额外线程都人间蒸发了。而锁却被正常复制了,在子进程看来,这个锁没有主人,所以没有任何人可以对它解锁。当子进程想 lock 这个锁时,不再有任何手段可以解开了。程序发生死锁。

9.系统启动的相关疑问总结
9.1.简述Android 系统启动流程

当按电源键触发开机,首先会从 ROM 中预定义的地方加载引导程序 BootLoader 到 RAM 中,并执行 BootLoader 程序启动 Linux Kernel, 然后启动用户级别的第一个进程: init 进程。init 进程会解析init.rc 脚本做一些初始化工作,包括挂载文件系统、创建工作目录以及启动系统服务进程等,其中系统服务进程包括 Zygote、service manager、media 等。在 Zygote 中会进一步去启动 system_server 进程,然后在 system_server 进程中会启动 AMS、WMS、PMS 等服务,等这些服务启动之后,AMS 中就会打开 Launcher 应用的 home Activity,最终就看到了手机的 “桌面”。

9.2.system_server 为什么要在 Zygote 中启动,而不是由 init 直接启动呢

Zygote 作为一个孵化器,可以提前加载一些资源,这样 fork() 时基于 Copy-On-Write 机制创建的其他进程就能直接使用这些资源,而不用重新加载。比如 system_server 就可以直接使用 Zygote 中的 JNI函数、共享库、常用的类、以及主题资源。

9.3.为什么要专门使用 Zygote 进程去孵化应用进程,而不是让 system_server 去孵化呢?

首先 system_server 相比 Zygote 多运行了 AMS、WMS 等服务,这些对一个应用程序来说是不需要的。另外进程的 fork() 对多线程不友好,仅会将发起调用的线程拷贝到子进程,这可能会导致死锁,而system_server 中肯定是有很多线程的。

9.4.描述下是怎么导致死锁的

在 POSIX 标准中,fork 的行为是这样的:复制整个用户空间的数据(通常使用 copy-on-write 的策略,所以可以实现的速度很快)以及所有系统对象,然后仅复制当前线程到子进程。这里:所有父进程中别的线程,到了子进程中都是突然蒸发掉的

对于锁来说,从 OS 看,每个锁有一个所有者,即最后一次 lock 它的线程。假设这么一个环境,在 fork之前,有一个子线程 lock 了某个锁,获得了对锁的所有权。fork 以后,在子进程中,所有的额外线程都人间蒸发了。而锁却被正常复制了,在子进程看来,这个锁没有主人,所以没有任何人可以对它解锁。当子进程想 lock 这个锁时,不再有任何手段可以解开了。程序发生死锁。

9.5.Zygote 为什么不采用 Binder 机制进行 IPC 通信

Binder 机制中存在 Binder 线程池,是多线程的,如果 Zygote 采用 Binder 的话就存在上面说的fork() 与 多线程的问题了。其实严格来说,Binder 机制不一定要多线程,所谓的 Binder 线程只不过是在循环读取 Binder 驱动的消息而已,只注册一个 Binder 线程也是可以工作的,比如 service manager就是这样的。实际上 Zygote 尽管没有采取 Binder 机制,它也不是单线程的,但它在 fork() 前主动停止了其他线程,fork() 后重新启动了。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/260626
推荐阅读
相关标签
  

闽ICP备14008679号