赞
踩
问:“我对CNN、RNN、TCN等神经网络没有任何基础,你能直观地给我讲一下TCN的结构、输入输出和原理吗?”
bing对TCN的解释如下:
TCN是一种用于处理序列数据的神经网络,它可以看作是一种特殊的CNN。CNN是一种用于处理图像数据的神经网络,它可以看作是一种特殊的卷积运算。卷积运算就是将一个小的滑动窗口(称为卷积核或过滤器)在一个大的数据(称为输入或特征图)上滑动,并对每个窗口内的数据进行加权求和,得到一个新的数据(称为输出或激活图)。这样就可以提取出输入中的局部特征,并减少参数数量。
TCN与CNN不同之处在于,它只在序列数据的时间维度上进行卷积运算,而不是在空间维度上。这样就可以保持序列数据的时序信息,并且使得输出只依赖于当前及之前的输入,而不会受到未来输入的影响。这种卷积运算称为因果卷积。
TCN还使用了空洞卷积,这是一种在卷积核中插入空白位置(称为膨胀因子)的技术,使得卷积核可以覆盖更长范围的输入,而不增加参数数量。这样就可以增加感受野,即输出能够感知到输入中多远距离的信息。
TCN还使用了残差连接,这是一种将每层输入直接与输出相加(称为跳跃连接)的技术,使得网络可以更容易地学习恒等映射,并防止梯度消失或爆炸。这样就可以构建更深层次的网络,并提高性能。
TCN通常由多个重复模块组成,每个模块包含两个因果空洞卷积层和一个残差连接。每个模块都有自己独立的膨胀因子和过滤器数量。最后一个模块后面还有一个全连接层或者softmax层来输出预测结果。
TCN接收一个多维数组作为输入,其中第一维表示序列长度(即时间步数),第二维表示特征数量(即信号通道数)。例如,在生物信号处理中,如果我们有1000个时间步长和8个信号通道,则我们可以将其表示为一个1000×8 的数组作为TCN 的输入。
TCN输出一个多维数组作为预测结果,其中第一维表示序列长度(即时间步数),第二维表示类别数量(即预测目标数)。例如,在生物信号分类中,如果我们有1000个时间步长和4个类别,则我们可以将其表示为一个1000×4 的数组作为TCN 的输出。
总结一下:
The Adding Problem with various T (we evaluated on T=200, 400, 600)
Copying Memory Task with various T (we evaluated on T=500, 1000, 2000)
Sequential MNIST digit classification
Permuted Sequential MNIST (based on Seq. MNIST, but more challenging)
JSB Chorales polyphonic music
Nottingham polyphonic music
PennTreebank [SMALL] word-level language modeling (LM)
Wikitext-103 [LARGE] word-level LM
LAMBADA [LARGE] word-level LM and textual understanding
PennTreebank [MEDIUM] char-level LM
text8 [LARGE] char-level LM
我这里选择了:JSB Chorales polyphonic music和Nottingham polyphonic music,对应poly_music文件夹,因为处理预测声波数据看起来和我要应用的处理生物信号数据比较相近。当然我们可以根据自己的需求选择其他的案例跑。
README中强调了,对应每个案例跑模型时只需要运行[TASK_NAME]_test.py
,比如打开music_test.py
,先让他运行着。
这部分内容对应tcn.py
中的class Chomp1d
、class TemporalBlock
。
TCN网络结构左边一大串主要包括四个部分:
膨胀因果卷积(Dilated Causal Conv
):膨胀就是说卷积时的输入存在间隔采样;因果指每层某时刻的数据只依赖于之前层当前时刻及之前时刻的数据,与未来时刻的数据无关;卷积就是CNN的卷积(卷积核在数据上进行的一种滑动运算的操作)。
权重归一化(WeightNorm
):通过重写深度网络的权重来进行加速。代码tcn.py
中从torch.nn.utils
中调用weight_norm
使用。
激活函数(ReLU
):挺有名的,从torch.nn
中调用。
Dropout
:指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃。意义是防止过拟合,提高模型的运算速度。
TCN网络结构右边是残差连接:
残差连接:
1*1的卷积块儿,作者说:不仅可以使网络拥有跨层传递信息的功能,而且可以保证输入输出的一致性。
TCN与LSTM的区别:LSTM是通过引入卷积操作使其能够处理图像信息,卷积只对一个时刻的输入图像进行操作;而TCN是利用卷积进行跨时间步提取特征。
TCN的实现——1-D FCN结构;
TCN的实现——因果卷积、膨胀因果卷积(对比膨胀非因果卷积)、残差块结构(参考ResNet,使TCN结构更具有泛化能力)
Namespace(clip=0.2, cuda=True, data='Nott', dropout=0.25, epochs=100, ksize=5, levels=4, log_interval=100, lr=0.001, nhid=150, optim='Adam', seed=1111) loading Nott data... Epoch 1 | lr 0.00100 | loss 24.20483 Epoch 1 | lr 0.00100 | loss 12.54757 Epoch 1 | lr 0.00100 | loss 10.34167 Epoch 1 | lr 0.00100 | loss 7.46519 Epoch 1 | lr 0.00100 | loss 6.22717 Epoch 1 | lr 0.00100 | loss 5.83443 Validation loss: 5.29395 Test loss: 5.40475 Saved model! Epoch 2 | lr 0.00100 | loss 5.49445 Epoch 2 | lr 0.00100 | loss 5.08582 Epoch 2 | lr 0.00100 | loss 5.28078 Epoch 2 | lr 0.00100 | loss 5.21557 Epoch 2 | lr 0.00100 | loss 5.09972 Epoch 2 | lr 0.00100 | loss 4.87487 Validation loss: 4.88671 Test loss: 4.91229 Saved model! Epoch 3 | lr 0.00100 | loss 4.55071 Epoch 3 | lr 0.00100 | loss 4.64663 Epoch 3 | lr 0.00100 | loss 4.62720 Epoch 3 | lr 0.00100 | loss 4.40581 Epoch 3 | lr 0.00100 | loss 4.54712 Epoch 3 | lr 0.00100 | loss 4.48989 Validation loss: 4.23855 Test loss: 4.27290 Saved model! Epoch 4 | lr 0.00100 | loss 4.15868 Epoch 4 | lr 0.00100 | loss 4.19424 Epoch 4 | lr 0.00100 | loss 3.93361 Epoch 4 | lr 0.00100 | loss 3.87698 Epoch 4 | lr 0.00100 | loss 4.26776 Epoch 4 | lr 0.00100 | loss 4.32880 Validation loss: 4.00616 Test loss: 4.04496 Saved model! Epoch 5 | lr 0.00100 | loss 4.02574 Epoch 5 | lr 0.00100 | loss 4.59837 Epoch 5 | lr 0.00100 | loss 4.17430 Epoch 5 | lr 0.00100 | loss 3.96050 Epoch 5 | lr 0.00100 | loss 4.04181 Epoch 5 | lr 0.00100 | loss 3.97466 Validation loss: 3.78924 Test loss: 3.84233 Saved model! Epoch 6 | lr 0.00100 | loss 3.77337 Epoch 6 | lr 0.00100 | loss 3.78759 Epoch 6 | lr 0.00100 | loss 4.05782 Epoch 6 | lr 0.00100 | loss 3.61807 Epoch 6 | lr 0.00100 | loss 3.66880 Epoch 6 | lr 0.00100 | loss 3.68237 Validation loss: 3.69415 Test loss: 3.71941 Saved model! Epoch 7 | lr 0.00100 | loss 3.71184 Epoch 7 | lr 0.00100 | loss 3.65575 Epoch 7 | lr 0.00100 | loss 3.50422 Epoch 7 | lr 0.00100 | loss 3.69709 Epoch 7 | lr 0.00100 | loss 3.39189 Epoch 7 | lr 0.00100 | loss 3.60912 Validation loss: 3.50421 Test loss: 3.52113 Saved model! Epoch 8 | lr 0.00100 | loss 3.39342 Epoch 8 | lr 0.00100 | loss 3.45223 Epoch 8 | lr 0.00100 | loss 3.47272 Epoch 8 | lr 0.00100 | loss 3.47585 Epoch 8 | lr 0.00100 | loss 3.88333 Epoch 8 | lr 0.00100 | loss 3.51368 Validation loss: 3.45557 Test loss: 3.46655 Saved model! Epoch 9 | lr 0.00100 | loss 3.38787 Epoch 9 | lr 0.00100 | loss 3.49427 Epoch 9 | lr 0.00100 | loss 3.42003 Epoch 9 | lr 0.00100 | loss 3.45465 Epoch 9 | lr 0.00100 | loss 3.44894 Epoch 9 | lr 0.00100 | loss 3.35138 Validation loss: 3.39177 Test loss: 3.39885 Saved model! Epoch 10 | lr 0.00100 | loss 3.33982 Epoch 10 | lr 0.00100 | loss 3.33333 Epoch 10 | lr 0.00100 | loss 3.27813 Epoch 10 | lr 0.00100 | loss 3.39872 Epoch 10 | lr 0.00100 | loss 3.31045 Epoch 10 | lr 0.00100 | loss 3.47179 Validation loss: 3.35350 Test loss: 3.35821 Saved model! Epoch 11 | lr 0.00100 | loss 3.24939 Epoch 11 | lr 0.00100 | loss 3.28225 Epoch 11 | lr 0.00100 | loss 3.31755 Epoch 11 | lr 0.00100 | loss 3.31538 Epoch 11 | lr 0.00100 | loss 3.34717 Epoch 11 | lr 0.00100 | loss 3.47794 Validation loss: 3.27830 Test loss: 3.28621 Saved model! Epoch 12 | lr 0.00100 | loss 3.24459 Epoch 12 | lr 0.00100 | loss 3.26871 Epoch 12 | lr 0.00100 | loss 2.83995 Epoch 12 | lr 0.00100 | loss 3.24781 Epoch 12 | lr 0.00100 | loss 3.25777 Epoch 12 | lr 0.00100 | loss 3.09675 Validation loss: 3.25199 Test loss: 3.25987 Saved model! Epoch 13 | lr 0.00100 | loss 3.18712 Epoch 13 | lr 0.00100 | loss 3.15744 Epoch 13 | lr 0.00100 | loss 3.08412 Epoch 13 | lr 0.00100 | loss 2.98677 Epoch 13 | lr 0.00100 | loss 3.23000 Epoch 13 | lr 0.00100 | loss 3.12484 Validation loss: 3.22609 Test loss: 3.22669 Saved model! Epoch 14 | lr 0.00100 | loss 2.86843 Epoch 14 | lr 0.00100 | loss 3.05798 Epoch 14 | lr 0.00100 | loss 3.11845 Epoch 14 | lr 0.00100 | loss 3.14372 Epoch 14 | lr 0.00100 | loss 3.19728 Epoch 14 | lr 0.00100 | loss 3.12642 Validation loss: 3.20776 Test loss: 3.20785 Saved model! Epoch 15 | lr 0.00100 | loss 3.09529 Epoch 15 | lr 0.00100 | loss 3.05085 Epoch 15 | lr 0.00100 | loss 3.12605 Epoch 15 | lr 0.00100 | loss 3.14538 Epoch 15 | lr 0.00100 | loss 3.09047 Epoch 15 | lr 0.00100 | loss 3.14403 Validation loss: 3.19157 Test loss: 3.19761 Saved model! Epoch 16 | lr 0.00100 | loss 3.08435 Epoch 16 | lr 0.00100 | loss 3.06446 Epoch 16 | lr 0.00100 | loss 3.07964 Epoch 16 | lr 0.00100 | loss 2.92217 Epoch 16 | lr 0.00100 | loss 3.02095 Epoch 16 | lr 0.00100 | loss 3.04373 Validation loss: 3.18486 Test loss: 3.18550 Saved model! Epoch 17 | lr 0.00100 | loss 3.02295 Epoch 17 | lr 0.00100 | loss 2.94601 Epoch 17 | lr 0.00100 | loss 2.90517 Epoch 17 | lr 0.00100 | loss 3.02466 Epoch 17 | lr 0.00100 | loss 2.96160 Epoch 17 | lr 0.00100 | loss 3.63558 Validation loss: 3.14967 Test loss: 3.15910 Saved model! Epoch 18 | lr 0.00100 | loss 3.01251 Epoch 18 | lr 0.00100 | loss 2.82075 Epoch 18 | lr 0.00100 | loss 2.78892 Epoch 18 | lr 0.00100 | loss 2.99531 Epoch 18 | lr 0.00100 | loss 2.96843 Epoch 18 | lr 0.00100 | loss 2.98169 Validation loss: 3.14602 Test loss: 3.15058 Saved model! Epoch 19 | lr 0.00100 | loss 2.90797 Epoch 19 | lr 0.00100 | loss 3.09173 Epoch 19 | lr 0.00100 | loss 2.91924 Epoch 19 | lr 0.00100 | loss 2.99306 Epoch 19 | lr 0.00100 | loss 2.91742 Epoch 19 | lr 0.00100 | loss 2.93122 Validation loss: 3.13545 Test loss: 3.13629 Saved model! Epoch 20 | lr 0.00100 | loss 2.81639 Epoch 20 | lr 0.00100 | loss 2.90578 Epoch 20 | lr 0.00100 | loss 2.88055 Epoch 20 | lr 0.00100 | loss 2.93285 Epoch 20 | lr 0.00100 | loss 3.00227 Epoch 20 | lr 0.00100 | loss 1.93661 Validation loss: 3.12148 Test loss: 3.11480 Saved model! Epoch 21 | lr 0.00100 | loss 2.72758 Epoch 21 | lr 0.00100 | loss 2.84461 Epoch 21 | lr 0.00100 | loss 2.90508 Epoch 21 | lr 0.00100 | loss 2.96725 Epoch 21 | lr 0.00100 | loss 2.87752 Epoch 21 | lr 0.00100 | loss 2.14672 Validation loss: 3.08553 Test loss: 3.09944 Saved model! Epoch 22 | lr 0.00100 | loss 2.81496 Epoch 22 | lr 0.00100 | loss 2.86394 Epoch 22 | lr 0.00100 | loss 2.81450 Epoch 22 | lr 0.00100 | loss 2.87718 Epoch 22 | lr 0.00100 | loss 2.79423 Epoch 22 | lr 0.00100 | loss 2.84248 Validation loss: 3.07362 Test loss: 3.07531 Saved model! Epoch 23 | lr 0.00100 | loss 2.80338 Epoch 23 | lr 0.00100 | loss 2.77892 Epoch 23 | lr 0.00100 | loss 2.73683 Epoch 23 | lr 0.00100 | loss 2.80235 Epoch 23 | lr 0.00100 | loss 2.89891 Epoch 23 | lr 0.00100 | loss 2.83766 Validation loss: 3.07538 Test loss: 3.07808 Epoch 24 | lr 0.00100 | loss 2.69057 Epoch 24 | lr 0.00100 | loss 2.53861 Epoch 24 | lr 0.00100 | loss 2.96076 Epoch 24 | lr 0.00100 | loss 2.82431 Epoch 24 | lr 0.00100 | loss 2.76815 Epoch 24 | lr 0.00100 | loss 2.70349 Validation loss: 3.05619 Test loss: 3.05848 Saved model! Epoch 25 | lr 0.00100 | loss 2.58305 Epoch 25 | lr 0.00100 | loss 2.75510 Epoch 25 | lr 0.00100 | loss 2.73684 Epoch 25 | lr 0.00100 | loss 2.79742 Epoch 25 | lr 0.00100 | loss 2.75214 Epoch 25 | lr 0.00100 | loss 2.74800 Validation loss: 3.04583 Test loss: 3.05974 Saved model! Epoch 26 | lr 0.00100 | loss 2.67008 Epoch 26 | lr 0.00100 | loss 2.52432 Epoch 26 | lr 0.00100 | loss 2.77907 Epoch 26 | lr 0.00100 | loss 2.66775 Epoch 26 | lr 0.00100 | loss 2.76033 Epoch 26 | lr 0.00100 | loss 2.77000 Validation loss: 3.02619 Test loss: 3.03652 Saved model! Epoch 27 | lr 0.00100 | loss 2.59768 Epoch 27 | lr 0.00100 | loss 2.66384 Epoch 27 | lr 0.00100 | loss 2.68714 Epoch 27 | lr 0.00100 | loss 2.65115 Epoch 27 | lr 0.00100 | loss 2.66188 Epoch 27 | lr 0.00100 | loss 2.73795 Validation loss: 3.00045 Test loss: 3.01429 Saved model! Epoch 28 | lr 0.00100 | loss 2.62839 Epoch 28 | lr 0.00100 | loss 2.54048 Epoch 28 | lr 0.00100 | loss 2.47716 Epoch 28 | lr 0.00100 | loss 2.64177 Epoch 28 | lr 0.00100 | loss 2.59507 Epoch 28 | lr 0.00100 | loss 2.63312 Validation loss: 3.00037 Test loss: 3.00544 Saved model! Epoch 29 | lr 0.00100 | loss 2.64653 Epoch 29 | lr 0.00100 | loss 2.58176 Epoch 29 | lr 0.00100 | loss 2.57617 Epoch 29 | lr 0.00100 | loss 2.69560 Epoch 29 | lr 0.00100 | loss 2.80495 Epoch 29 | lr 0.00100 | loss 2.61169 Validation loss: 3.00765 Test loss: 3.01136 Epoch 30 | lr 0.00100 | loss 2.69717 Epoch 30 | lr 0.00100 | loss 2.54373 Epoch 30 | lr 0.00100 | loss 2.63413 Epoch 30 | lr 0.00100 | loss 2.58480 Epoch 30 | lr 0.00100 | loss 2.59596 Epoch 30 | lr 0.00100 | loss 2.69300 Validation loss: 3.01752 Test loss: 3.01258 Epoch 31 | lr 0.00010 | loss 2.45645 Epoch 31 | lr 0.00010 | loss 2.45380 Epoch 31 | lr 0.00010 | loss 2.48504 Epoch 31 | lr 0.00010 | loss 2.51676 Epoch 31 | lr 0.00010 | loss 2.56140 Epoch 31 | lr 0.00010 | loss 2.45933 Validation loss: 2.95486 Test loss: 2.96315 Saved model! Epoch 32 | lr 0.00010 | loss 2.43954 Epoch 32 | lr 0.00010 | loss 2.43467 Epoch 32 | lr 0.00010 | loss 2.42177 Epoch 32 | lr 0.00010 | loss 2.46623 Epoch 32 | lr 0.00010 | loss 2.61942 Epoch 32 | lr 0.00010 | loss 2.46129 Validation loss: 2.95515 Test loss: 2.96563 Epoch 33 | lr 0.00010 | loss 2.54713 Epoch 33 | lr 0.00010 | loss 2.41953 Epoch 33 | lr 0.00010 | loss 2.34418 Epoch 33 | lr 0.00010 | loss 2.44249 Epoch 33 | lr 0.00010 | loss 2.53604 Epoch 33 | lr 0.00010 | loss 2.43318 Validation loss: 2.95291 Test loss: 2.96509 Saved model! Epoch 34 | lr 0.00010 | loss 2.43941 Epoch 34 | lr 0.00010 | loss 2.41067 Epoch 34 | lr 0.00010 | loss 2.43031 Epoch 34 | lr 0.00010 | loss 2.62946 Epoch 34 | lr 0.00010 | loss 2.46241 Epoch 34 | lr 0.00010 | loss 2.36850 Validation loss: 2.95889 Test loss: 2.96941 Epoch 35 | lr 0.00001 | loss 2.43545 Epoch 35 | lr 0.00001 | loss 2.44627 Epoch 35 | lr 0.00001 | loss 3.08806 Epoch 35 | lr 0.00001 | loss 2.42842 Epoch 35 | lr 0.00001 | loss 2.24893 Epoch 35 | lr 0.00001 | loss 2.36822 Validation loss: 2.95521 Test loss: 2.96670 Epoch 36 | lr 0.00001 | loss 2.34449 Epoch 36 | lr 0.00001 | loss 2.52862 Epoch 36 | lr 0.00001 | loss 2.42900 Epoch 36 | lr 0.00001 | loss 2.04666 Epoch 36 | lr 0.00001 | loss 2.41113 Epoch 36 | lr 0.00001 | loss 2.45220 Validation loss: 2.95483 Test loss: 2.96588 Epoch 37 | lr 0.00001 | loss 2.43688 Epoch 37 | lr 0.00001 | loss 2.81418 Epoch 37 | lr 0.00001 | loss 2.39969 Epoch 37 | lr 0.00001 | loss 2.36796 Epoch 37 | lr 0.00001 | loss 2.41917 Epoch 37 | lr 0.00001 | loss 2.21677 Validation loss: 2.95496 Test loss: 2.96567 Epoch 38 | lr 0.00001 | loss 2.34746 Epoch 38 | lr 0.00001 | loss 2.45062 Epoch 38 | lr 0.00001 | loss 2.43343 Epoch 38 | lr 0.00001 | loss 2.46355 Epoch 38 | lr 0.00001 | loss 2.41640 Epoch 38 | lr 0.00001 | loss 2.15776 Validation loss: 2.95320 Test loss: 2.96515 Epoch 39 | lr 0.00001 | loss 2.40601 Epoch 39 | lr 0.00001 | loss 2.49198 Epoch 39 | lr 0.00001 | loss 2.53223 Epoch 39 | lr 0.00001 | loss 2.00882 Epoch 39 | lr 0.00001 | loss 2.34943 Epoch 39 | lr 0.00001 | loss 2.43459 Validation loss: 2.95460 Test loss: 2.96632 Epoch 40 | lr 0.00001 | loss 2.48286 Epoch 40 | lr 0.00001 | loss 2.33617 Epoch 40 | lr 0.00001 | loss 2.42163 Epoch 40 | lr 0.00001 | loss 2.35010 Epoch 40 | lr 0.00001 | loss 2.40796 Epoch 40 | lr 0.00001 | loss 2.45041 Validation loss: 2.95403 Test loss: 2.96556 Epoch 41 | lr 0.00001 | loss 2.40313 Epoch 41 | lr 0.00001 | loss 2.32656 Epoch 41 | lr 0.00001 | loss 2.47946 Epoch 41 | lr 0.00001 | loss 2.15760 Epoch 41 | lr 0.00001 | loss 2.37480 Epoch 41 | lr 0.00001 | loss 2.46791 Validation loss: 2.95404 Test loss: 2.96532 Epoch 42 | lr 0.00001 | loss 2.45571 Epoch 42 | lr 0.00001 | loss 2.39349 Epoch 42 | lr 0.00001 | loss 2.40195 Epoch 42 | lr 0.00001 | loss 2.40755 Epoch 42 | lr 0.00001 | loss 2.20085 Epoch 42 | lr 0.00001 | loss 2.55087 Validation loss: 2.95563 Test loss: 2.96605 Epoch 43 | lr 0.00000 | loss 2.41390 Epoch 43 | lr 0.00000 | loss 2.38766 Epoch 43 | lr 0.00000 | loss 2.40005 Epoch 43 | lr 0.00000 | loss 2.40574 Epoch 43 | lr 0.00000 | loss 2.45363 Epoch 43 | lr 0.00000 | loss 2.45474 Validation loss: 2.95526 Test loss: 2.96588 Epoch 44 | lr 0.00000 | loss 2.44101 Epoch 44 | lr 0.00000 | loss 2.38717 Epoch 44 | lr 0.00000 | loss 2.42643 Epoch 44 | lr 0.00000 | loss 2.37804 Epoch 44 | lr 0.00000 | loss 2.40502 Epoch 44 | lr 0.00000 | loss 2.44630 Validation loss: 2.95480 Test loss: 2.96562 Epoch 45 | lr 0.00000 | loss 2.35229 Epoch 45 | lr 0.00000 | loss 2.39950 Epoch 45 | lr 0.00000 | loss 2.47582 Epoch 45 | lr 0.00000 | loss 2.46909 Epoch 45 | lr 0.00000 | loss 2.40886 Epoch 45 | lr 0.00000 | loss 2.46704 Validation loss: 2.95471 Test loss: 2.96563 Epoch 46 | lr 0.00000 | loss 2.46100 Epoch 46 | lr 0.00000 | loss 1.39584 Epoch 46 | lr 0.00000 | loss 2.35312 Epoch 46 | lr 0.00000 | loss 2.70966 Epoch 46 | lr 0.00000 | loss 2.71677 Epoch 46 | lr 0.00000 | loss 2.42208 Validation loss: 2.95453 Test loss: 2.96552 Epoch 47 | lr 0.00000 | loss 2.43515 Epoch 47 | lr 0.00000 | loss 2.50489 Epoch 47 | lr 0.00000 | loss 2.41215 Epoch 47 | lr 0.00000 | loss 2.34724 Epoch 47 | lr 0.00000 | loss 2.49304 Epoch 47 | lr 0.00000 | loss 2.32401 Validation loss: 2.95436 Test loss: 2.96538 Epoch 48 | lr 0.00000 | loss 2.41615 Epoch 48 | lr 0.00000 | loss 2.39621 Epoch 48 | lr 0.00000 | loss 2.38097 Epoch 48 | lr 0.00000 | loss 2.44820 Epoch 48 | lr 0.00000 | loss 2.02717 Epoch 48 | lr 0.00000 | loss 2.44434 Validation loss: 2.95430 Test loss: 2.96533 Epoch 49 | lr 0.00000 | loss 2.39831 Epoch 49 | lr 0.00000 | loss 2.53042 Epoch 49 | lr 0.00000 | loss 2.48773 Epoch 49 | lr 0.00000 | loss 2.45923 Epoch 49 | lr 0.00000 | loss 2.39248 Epoch 49 | lr 0.00000 | loss 2.41314 Validation loss: 2.95415 Test loss: 2.96527 Epoch 50 | lr 0.00000 | loss 2.34241 Epoch 50 | lr 0.00000 | loss 2.43070 Epoch 50 | lr 0.00000 | loss 2.05006 Epoch 50 | lr 0.00000 | loss 2.49058 Epoch 50 | lr 0.00000 | loss 2.40379 Epoch 50 | lr 0.00000 | loss 2.46354 Validation loss: 2.95412 Test loss: 2.96525 Epoch 51 | lr 0.00000 | loss 2.50044 Epoch 51 | lr 0.00000 | loss 2.31235 Epoch 51 | lr 0.00000 | loss 2.35816 Epoch 51 | lr 0.00000 | loss 2.48627 Epoch 51 | lr 0.00000 | loss 2.42042 Epoch 51 | lr 0.00000 | loss 2.40909 Validation loss: 2.95393 Test loss: 2.96513 Epoch 52 | lr 0.00000 | loss 2.41315 Epoch 52 | lr 0.00000 | loss 2.44901 Epoch 52 | lr 0.00000 | loss 1.71025 Epoch 52 | lr 0.00000 | loss 2.42413 Epoch 52 | lr 0.00000 | loss 2.42102 Epoch 52 | lr 0.00000 | loss 2.39134 Validation loss: 2.95397 Test loss: 2.96515 Epoch 53 | lr 0.00000 | loss 2.40649 Epoch 53 | lr 0.00000 | loss 2.54095 Epoch 53 | lr 0.00000 | loss 2.19728 Epoch 53 | lr 0.00000 | loss 2.51835 Epoch 53 | lr 0.00000 | loss 2.40190 Epoch 53 | lr 0.00000 | loss 2.39805 Validation loss: 2.95385 Test loss: 2.96504 Epoch 54 | lr 0.00000 | loss 2.39350 Epoch 54 | lr 0.00000 | loss 2.49204 Epoch 54 | lr 0.00000 | loss 2.31756 Epoch 54 | lr 0.00000 | loss 2.43664 Epoch 54 | lr 0.00000 | loss 2.39233 Epoch 54 | lr 0.00000 | loss 2.46368 Validation loss: 2.95395 Test loss: 2.96514 Epoch 55 | lr 0.00000 | loss 2.39194 Epoch 55 | lr 0.00000 | loss 2.46516 Epoch 55 | lr 0.00000 | loss 2.45878 Epoch 55 | lr 0.00000 | loss 2.35791 Epoch 55 | lr 0.00000 | loss 2.23562 Epoch 55 | lr 0.00000 | loss 2.40309 Validation loss: 2.95402 Test loss: 2.96521 Epoch 56 | lr 0.00000 | loss 2.42875 Epoch 56 | lr 0.00000 | loss 2.39907 Epoch 56 | lr 0.00000 | loss 2.35058 Epoch 56 | lr 0.00000 | loss 2.46811 Epoch 56 | lr 0.00000 | loss 2.37041 Epoch 56 | lr 0.00000 | loss 2.40081 Validation loss: 2.95403 Test loss: 2.96521 Epoch 57 | lr 0.00000 | loss 2.42965 Epoch 57 | lr 0.00000 | loss 2.36886 Epoch 57 | lr 0.00000 | loss 2.52495 Epoch 57 | lr 0.00000 | loss 2.40957 Epoch 57 | lr 0.00000 | loss 2.50273 Epoch 57 | lr 0.00000 | loss 2.31355 Validation loss: 2.95403 Test loss: 2.96521 Epoch 58 | lr 0.00000 | loss 2.44439 Epoch 58 | lr 0.00000 | loss 2.44985 Epoch 58 | lr 0.00000 | loss 2.35233 Epoch 58 | lr 0.00000 | loss 2.40324 Epoch 58 | lr 0.00000 | loss 2.44942 Epoch 58 | lr 0.00000 | loss 2.45389 Validation loss: 2.95402 Test loss: 2.96521 Epoch 59 | lr 0.00000 | loss 2.38148 Epoch 59 | lr 0.00000 | loss 2.36841 Epoch 59 | lr 0.00000 | loss 2.41448 Epoch 59 | lr 0.00000 | loss 2.44373 Epoch 59 | lr 0.00000 | loss 2.44111 Epoch 59 | lr 0.00000 | loss 2.45866 Validation loss: 2.95402 Test loss: 2.96520 Epoch 60 | lr 0.00000 | loss 2.41296 Epoch 60 | lr 0.00000 | loss 2.53527 Epoch 60 | lr 0.00000 | loss 2.39205 Epoch 60 | lr 0.00000 | loss 2.31394 Epoch 60 | lr 0.00000 | loss 2.38146 Epoch 60 | lr 0.00000 | loss 2.43245 Validation loss: 2.95402 Test loss: 2.96520 Epoch 61 | lr 0.00000 | loss 2.48459 Epoch 61 | lr 0.00000 | loss 2.36444 Epoch 61 | lr 0.00000 | loss 2.42401 Epoch 61 | lr 0.00000 | loss 2.38782 Epoch 61 | lr 0.00000 | loss 2.39042 Epoch 61 | lr 0.00000 | loss 2.40236 Validation loss: 2.95402 Test loss: 2.96520 Epoch 62 | lr 0.00000 | loss 2.43595 Epoch 62 | lr 0.00000 | loss 2.44351 Epoch 62 | lr 0.00000 | loss 2.38162 Epoch 62 | lr 0.00000 | loss 2.41288 Epoch 62 | lr 0.00000 | loss 2.44867 Epoch 62 | lr 0.00000 | loss 2.20912 Validation loss: 2.95402 Test loss: 2.96520 Epoch 63 | lr 0.00000 | loss 2.18615 Epoch 63 | lr 0.00000 | loss 2.54030 Epoch 63 | lr 0.00000 | loss 2.47183 Epoch 63 | lr 0.00000 | loss 2.39264 Epoch 63 | lr 0.00000 | loss 2.38341 Epoch 63 | lr 0.00000 | loss 2.43780 Validation loss: 2.95402 Test loss: 2.96520 Epoch 64 | lr 0.00000 | loss 2.44530 Epoch 64 | lr 0.00000 | loss 2.28641 Epoch 64 | lr 0.00000 | loss 2.26978 Epoch 64 | lr 0.00000 | loss 2.47008 Epoch 64 | lr 0.00000 | loss 2.46534 Epoch 64 | lr 0.00000 | loss 2.40426 Validation loss: 2.95401 Test loss: 2.96520 Epoch 65 | lr 0.00000 | loss 2.45915 Epoch 65 | lr 0.00000 | loss 2.50910 Epoch 65 | lr 0.00000 | loss 2.48938 Epoch 65 | lr 0.00000 | loss 2.32067 Epoch 65 | lr 0.00000 | loss 2.37479 Epoch 65 | lr 0.00000 | loss 2.51838 Validation loss: 2.95401 Test loss: 2.96520 Epoch 66 | lr 0.00000 | loss 2.43692 Epoch 66 | lr 0.00000 | loss 2.34911 Epoch 66 | lr 0.00000 | loss 2.30305 Epoch 66 | lr 0.00000 | loss 2.37067 Epoch 66 | lr 0.00000 | loss 2.40642 Epoch 66 | lr 0.00000 | loss 2.46048 Validation loss: 2.95401 Test loss: 2.96520 Epoch 67 | lr 0.00000 | loss 2.59787 Epoch 67 | lr 0.00000 | loss 2.47146 Epoch 67 | lr 0.00000 | loss 2.43156 Epoch 67 | lr 0.00000 | loss 2.44966 Epoch 67 | lr 0.00000 | loss 2.40391 Epoch 67 | lr 0.00000 | loss 2.37677 Validation loss: 2.95401 Test loss: 2.96520 Epoch 68 | lr 0.00000 | loss 2.41856 Epoch 68 | lr 0.00000 | loss 2.47008 Epoch 68 | lr 0.00000 | loss 2.47840 Epoch 68 | lr 0.00000 | loss 2.36878 Epoch 68 | lr 0.00000 | loss 2.43735 Epoch 68 | lr 0.00000 | loss 2.34884 Validation loss: 2.95401 Test loss: 2.96519 Epoch 69 | lr 0.00000 | loss 1.76942 Epoch 69 | lr 0.00000 | loss 2.38943 Epoch 69 | lr 0.00000 | loss 2.41059 Epoch 69 | lr 0.00000 | loss 2.41351 Epoch 69 | lr 0.00000 | loss 2.48355 Epoch 69 | lr 0.00000 | loss 2.46324 Validation loss: 2.95401 Test loss: 2.96520 Epoch 70 | lr 0.00000 | loss 2.08691 Epoch 70 | lr 0.00000 | loss 2.44040 Epoch 70 | lr 0.00000 | loss 2.36904 Epoch 70 | lr 0.00000 | loss 2.42060 Epoch 70 | lr 0.00000 | loss 2.43333 Epoch 70 | lr 0.00000 | loss 2.41498 Validation loss: 2.95401 Test loss: 2.96520 Epoch 71 | lr 0.00000 | loss 2.26960 Epoch 71 | lr 0.00000 | loss 2.28289 Epoch 71 | lr 0.00000 | loss 2.36861 Epoch 71 | lr 0.00000 | loss 2.38697 Epoch 71 | lr 0.00000 | loss 2.47841 Epoch 71 | lr 0.00000 | loss 2.48060 Validation loss: 2.95401 Test loss: 2.96520 Epoch 72 | lr 0.00000 | loss 2.13208 Epoch 72 | lr 0.00000 | loss 2.41577 Epoch 72 | lr 0.00000 | loss 2.42331 Epoch 72 | lr 0.00000 | loss 2.48011 Epoch 72 | lr 0.00000 | loss 1.39558 Epoch 72 | lr 0.00000 | loss 2.46180 Validation loss: 2.95401 Test loss: 2.96520 Epoch 73 | lr 0.00000 | loss 2.39402 Epoch 73 | lr 0.00000 | loss 2.48592 Epoch 73 | lr 0.00000 | loss 2.36022 Epoch 73 | lr 0.00000 | loss 2.47524 Epoch 73 | lr 0.00000 | loss 2.13461 Epoch 73 | lr 0.00000 | loss 2.36569 Validation loss: 2.95401 Test loss: 2.96520 Epoch 74 | lr 0.00000 | loss 2.38321 Epoch 74 | lr 0.00000 | loss 2.44158 Epoch 74 | lr 0.00000 | loss 2.26542 Epoch 74 | lr 0.00000 | loss 2.35360 Epoch 74 | lr 0.00000 | loss 2.44588 Epoch 74 | lr 0.00000 | loss 2.41055 Validation loss: 2.95401 Test loss: 2.96520 Epoch 75 | lr 0.00000 | loss 2.44660 Epoch 75 | lr 0.00000 | loss 2.47491 Epoch 75 | lr 0.00000 | loss 2.42964 Epoch 75 | lr 0.00000 | loss 2.41180 Epoch 75 | lr 0.00000 | loss 2.44037 Epoch 75 | lr 0.00000 | loss 2.39054 Validation loss: 2.95401 Test loss: 2.96520 Epoch 76 | lr 0.00000 | loss 2.42163 Epoch 76 | lr 0.00000 | loss 2.47723 Epoch 76 | lr 0.00000 | loss 2.46514 Epoch 76 | lr 0.00000 | loss 2.34455 Epoch 76 | lr 0.00000 | loss 2.40418 Epoch 76 | lr 0.00000 | loss 2.40259 Validation loss: 2.95401 Test loss: 2.96519 Epoch 77 | lr 0.00000 | loss 2.41411 Epoch 77 | lr 0.00000 | loss 2.45589 Epoch 77 | lr 0.00000 | loss 2.44414 Epoch 77 | lr 0.00000 | loss 2.37484 Epoch 77 | lr 0.00000 | loss 2.37498 Epoch 77 | lr 0.00000 | loss 2.31428 Validation loss: 2.95401 Test loss: 2.96519 Epoch 78 | lr 0.00000 | loss 2.55251 Epoch 78 | lr 0.00000 | loss 2.31894 Epoch 78 | lr 0.00000 | loss 2.44500 Epoch 78 | lr 0.00000 | loss 2.42809 Epoch 78 | lr 0.00000 | loss 2.46257 Epoch 78 | lr 0.00000 | loss 2.40419 Validation loss: 2.95401 Test loss: 2.96519 Epoch 79 | lr 0.00000 | loss 2.32429 Epoch 79 | lr 0.00000 | loss 2.53482 Epoch 79 | lr 0.00000 | loss 2.42113 Epoch 79 | lr 0.00000 | loss 2.17599 Epoch 79 | lr 0.00000 | loss 2.41099 Epoch 79 | lr 0.00000 | loss 2.59278 Validation loss: 2.95400 Test loss: 2.96519 Epoch 80 | lr 0.00000 | loss 2.39924 Epoch 80 | lr 0.00000 | loss 2.65279 Epoch 80 | lr 0.00000 | loss 2.44098 Epoch 80 | lr 0.00000 | loss 2.36354 Epoch 80 | lr 0.00000 | loss 2.25048 Epoch 80 | lr 0.00000 | loss 2.35756 Validation loss: 2.95400 Test loss: 2.96519 Epoch 81 | lr 0.00000 | loss 2.41862 Epoch 81 | lr 0.00000 | loss 2.48602 Epoch 81 | lr 0.00000 | loss 2.48530 Epoch 81 | lr 0.00000 | loss 2.66520 Epoch 81 | lr 0.00000 | loss 2.43285 Epoch 81 | lr 0.00000 | loss 2.35819 Validation loss: 2.95400 Test loss: 2.96519 Epoch 82 | lr 0.00000 | loss 2.42112 Epoch 82 | lr 0.00000 | loss 2.32117 Epoch 82 | lr 0.00000 | loss 2.36124 Epoch 82 | lr 0.00000 | loss 2.36869 Epoch 82 | lr 0.00000 | loss 2.56043 Epoch 82 | lr 0.00000 | loss 2.40713 Validation loss: 2.95400 Test loss: 2.96520 Epoch 83 | lr 0.00000 | loss 2.77187 Epoch 83 | lr 0.00000 | loss 2.41533 Epoch 83 | lr 0.00000 | loss 2.36156 Epoch 83 | lr 0.00000 | loss 2.52006 Epoch 83 | lr 0.00000 | loss 2.44264 Epoch 83 | lr 0.00000 | loss 2.48203 Validation loss: 2.95400 Test loss: 2.96519 Epoch 84 | lr 0.00000 | loss 2.39321 Epoch 84 | lr 0.00000 | loss 1.88318 Epoch 84 | lr 0.00000 | loss 2.40187 Epoch 84 | lr 0.00000 | loss 2.43431 Epoch 84 | lr 0.00000 | loss 2.57168 Epoch 84 | lr 0.00000 | loss 2.33964 Validation loss: 2.95400 Test loss: 2.96519 Epoch 85 | lr 0.00000 | loss 2.40599 Epoch 85 | lr 0.00000 | loss 2.42410 Epoch 85 | lr 0.00000 | loss 2.39999 Epoch 85 | lr 0.00000 | loss 2.47565 Epoch 85 | lr 0.00000 | loss 2.37174 Epoch 85 | lr 0.00000 | loss 2.45941 Validation loss: 2.95400 Test loss: 2.96519 Epoch 86 | lr 0.00000 | loss 2.15863 Epoch 86 | lr 0.00000 | loss 2.37759 Epoch 86 | lr 0.00000 | loss 2.56286 Epoch 86 | lr 0.00000 | loss 2.42264 Epoch 86 | lr 0.00000 | loss 2.47878 Epoch 86 | lr 0.00000 | loss 2.46373 Validation loss: 2.95400 Test loss: 2.96519 Epoch 87 | lr 0.00000 | loss 2.76105 Epoch 87 | lr 0.00000 | loss 2.35281 Epoch 87 | lr 0.00000 | loss 2.45527 Epoch 87 | lr 0.00000 | loss 2.45856 Epoch 87 | lr 0.00000 | loss 2.62649 Epoch 87 | lr 0.00000 | loss 2.52481 Validation loss: 2.95400 Test loss: 2.96519 Epoch 88 | lr 0.00000 | loss 2.47774 Epoch 88 | lr 0.00000 | loss 2.34679 Epoch 88 | lr 0.00000 | loss 2.44432 Epoch 88 | lr 0.00000 | loss 2.12840 Epoch 88 | lr 0.00000 | loss 2.51886 Epoch 88 | lr 0.00000 | loss 2.06461 Validation loss: 2.95400 Test loss: 2.96519 Epoch 89 | lr 0.00000 | loss 2.37020 Epoch 89 | lr 0.00000 | loss 2.47868 Epoch 89 | lr 0.00000 | loss 2.39565 Epoch 89 | lr 0.00000 | loss 2.40516 Epoch 89 | lr 0.00000 | loss 2.41972 Epoch 89 | lr 0.00000 | loss 2.38832 Validation loss: 2.95400 Test loss: 2.96519 Epoch 90 | lr 0.00000 | loss 2.23446 Epoch 90 | lr 0.00000 | loss 2.45653 Epoch 90 | lr 0.00000 | loss 2.40566 Epoch 90 | lr 0.00000 | loss 2.49196 Epoch 90 | lr 0.00000 | loss 2.36378 Epoch 90 | lr 0.00000 | loss 2.41977 Validation loss: 2.95400 Test loss: 2.96519 Epoch 91 | lr 0.00000 | loss 2.34804 Epoch 91 | lr 0.00000 | loss 2.42081 Epoch 91 | lr 0.00000 | loss 2.42765 Epoch 91 | lr 0.00000 | loss 2.51739 Epoch 91 | lr 0.00000 | loss 2.50900 Epoch 91 | lr 0.00000 | loss 2.50998 Validation loss: 2.95400 Test loss: 2.96519 Epoch 92 | lr 0.00000 | loss 2.44960 Epoch 92 | lr 0.00000 | loss 2.38403 Epoch 92 | lr 0.00000 | loss 2.49420 Epoch 92 | lr 0.00000 | loss 2.32383 Epoch 92 | lr 0.00000 | loss 2.22930 Epoch 92 | lr 0.00000 | loss 2.41387 Validation loss: 2.95400 Test loss: 2.96519 Epoch 93 | lr 0.00000 | loss 2.50621 Epoch 93 | lr 0.00000 | loss 2.40276 Epoch 93 | lr 0.00000 | loss 2.35815 Epoch 93 | lr 0.00000 | loss 2.42412 Epoch 93 | lr 0.00000 | loss 2.36929 Epoch 93 | lr 0.00000 | loss 2.40508 Validation loss: 2.95400 Test loss: 2.96519 Epoch 94 | lr 0.00000 | loss 2.32516 Epoch 94 | lr 0.00000 | loss 2.63810 Epoch 94 | lr 0.00000 | loss 2.53540 Epoch 94 | lr 0.00000 | loss 2.49643 Epoch 94 | lr 0.00000 | loss 2.43261 Epoch 94 | lr 0.00000 | loss 2.39358 Validation loss: 2.95400 Test loss: 2.96519 Epoch 95 | lr 0.00000 | loss 2.37413 Epoch 95 | lr 0.00000 | loss 2.41371 Epoch 95 | lr 0.00000 | loss 1.82993 Epoch 95 | lr 0.00000 | loss 2.46905 Epoch 95 | lr 0.00000 | loss 2.41483 Epoch 95 | lr 0.00000 | loss 2.42171 Validation loss: 2.95400 Test loss: 2.96519 Epoch 96 | lr 0.00000 | loss 2.40594 Epoch 96 | lr 0.00000 | loss 2.46985 Epoch 96 | lr 0.00000 | loss 2.41713 Epoch 96 | lr 0.00000 | loss 2.42794 Epoch 96 | lr 0.00000 | loss 2.34145 Epoch 96 | lr 0.00000 | loss 2.39331 Validation loss: 2.95400 Test loss: 2.96519 Epoch 97 | lr 0.00000 | loss 2.46766 Epoch 97 | lr 0.00000 | loss 2.50765 Epoch 97 | lr 0.00000 | loss 2.39896 Epoch 97 | lr 0.00000 | loss 2.46505 Epoch 97 | lr 0.00000 | loss 2.52749 Epoch 97 | lr 0.00000 | loss 2.40895 Validation loss: 2.95400 Test loss: 2.96519 Epoch 98 | lr 0.00000 | loss 2.43740 Epoch 98 | lr 0.00000 | loss 2.42547 Epoch 98 | lr 0.00000 | loss 2.65314 Epoch 98 | lr 0.00000 | loss 2.36240 Epoch 98 | lr 0.00000 | loss 2.21236 Epoch 98 | lr 0.00000 | loss 2.42001 Validation loss: 2.95400 Test loss: 2.96519 Epoch 99 | lr 0.00000 | loss 2.44869 Epoch 99 | lr 0.00000 | loss 2.41306 Epoch 99 | lr 0.00000 | loss 2.46927 Epoch 99 | lr 0.00000 | loss 2.29154 Epoch 99 | lr 0.00000 | loss 2.40120 Epoch 99 | lr 0.00000 | loss 2.36292 Validation loss: 2.95400 Test loss: 2.96519 Epoch 100 | lr 0.00000 | loss 2.51047 Epoch 100 | lr 0.00000 | loss 2.29219 Epoch 100 | lr 0.00000 | loss 2.29253 Epoch 100 | lr 0.00000 | loss 2.42894 Epoch 100 | lr 0.00000 | loss 2.38489 Epoch 100 | lr 0.00000 | loss 2.40344 Validation loss: 2.95400 Test loss: 2.96519 ----------------------------------------------------------------------------------------- Eval loss: 2.96509 Process finished with exit code 0
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。