当前位置:   article > 正文

opencv模板匹配

opencv模板匹配

NORMED的意思就是结果范围在[-1, 1]之间

   cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED: `0 为最优,越大越差`,值越小越好

   cv2.TM_CCORR, cv2.TM_CCORR_NORMED, cv2.TM_CCOEFF, cv2.TM_CCOEFF_NORMED: `越大越好`

如果你使用的是 TM_SQDIFF 方法,那么确实需要使用灰度图像。这是因为 TM_SQDIFF 方法计算的是图像差异的平方和,而不是相关性。在这种情况下,你需要确保模板图像和待匹配图像都是灰度图像,以便正确计算差异。
如果你使用的是其他匹配方法(例如 TM_CCORR 或 TM_CCOEFF),则可以使用彩色图像。这些方法计算的是相关性或相关系数,而不涉及差异的平方和。

cv2.imread 是 OpenCV 中用于从指定文件加载图像的函数。第二个参数 flag 决定了图像的读取方式。在你提供的代码中,参数 0 表示将图像以灰度模式读取。

具体来说,这里的 0 对应以下标志:

  • cv2.IMREAD_GRAYSCALE:它指定以灰度模式加载图像。这意味着图像将被转换为单通道的灰度图像,每个像素的值在 0 到 255 之间,表示图像的亮度。这对于处理灰度图像或进行模板匹配等任务非常有用。

如果你想加载彩色图像,可以使用以下标志之一:

  • cv2.IMREAD_COLOR:加载彩色图像,忽略图像的透明度。这是默认标志,也可以用整数值 1 表示。
  • cv2.IMREAD_UNCHANGED:加载图像,包括透明通道(如果有的话)。这对于处理带有 alpha 通道的图像很有用,也可以用整数值 -1 表示。
  1. # method: TM_SQDIFF, 用minVal
  2. import cv2
  3. import numpy as np
  4. import matplotlib.pyplot as plt
  5. cat = cv2.imread('./aaaa.jpg', 0)
  6. template = cv2.imread('./template.png', 0)
  7. th, tw = template.shape[::]
  8. rv = cv2.matchTemplate(cat, template, cv2.TM_SQDIFF)
  9. minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(rv)
  10. topLeft = minLoc
  11. bottomRight = (topLeft[0] + tw, topLeft[1] + th)
  12. cv2.rectangle(cat, topLeft, bottomRight, 255, 2)
  13. plt.subplot(121), plt.imshow(rv, cmap='gray')
  14. plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
  15. plt.subplot(122), plt.imshow(cat, cmap='gray')
  16. plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
  17. plt.show()
  1. TM_CCOEFF 方法, 越大越好,用maxVal
  2. import cv2
  3. import numpy as np
  4. import matplotlib.pyplot as plt
  5. cat = cv2.imread('./cats.jpg', 0)
  6. template = cv2.imread('./tongue.png', 0)
  7. tw, th = template.shape[::-1]
  8. rv = cv2.matchTemplate(cat, template, cv2.TM_CCOEFF)
  9. minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(rv)
  10. topLeft = maxLoc
  11. bottomRight = (topLeft[0] + tw, topLeft[1] + th)
  12. cv2.rectangle(cat, topLeft, bottomRight, 255, 2)
  13. plt.subplot(121), plt.imshow(rv, cmap='gray')
  14. plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
  15. plt.subplot(122), plt.imshow(cat, cmap='gray')
  16. plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
  17. plt.show()

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/293685
推荐阅读
相关标签
  

闽ICP备14008679号