1、为什么要用神经网络?
对于非线性分类问题,如果用多元线性回归进行分类,需要构造许多高次项,导致特征特多,学习参数过多,从而复杂度太高 。
在神经网络中引入激活函数一个重要的原因就是为了引入非线性。
2、CNN基本问题
层级结构:输入层->卷积层->激活层->池化层->卷积层->激活层->池化层->全连接层····
(1)输入层数据预处理:去均值;归一化;PCA/白化;
去均值:即0均值化,CNN常用,训练集所有像素值减去均值,把输入数据各个维度中心化到0,测试集也减相同的均值;
目的:(1)数据有过大的均值可能导致参数的梯度过大,在梯度回传时会有一些影响;(2)如果有后续的处理,可能要求数据0均值,比如PCA。
归一化:幅度归一化到同样的范围;
目的:为了让不同维度的数据具有相同的分布规模,方便操作,图像一般不需要。
PCA/白化:降维,白化是对PCA降维后的数据每个特征轴上的幅度归一化;
目的:相当于在零均值化和归一化操作之间插入一个旋转操作,将数据投影在主轴上。图像一般不需要,因为图像的信息本来就是依靠像素之间的相对差异来体现的。
(2)池化层作用:
本质上,是在精简feature map数据量的同时,最大化保留空间信息和特征信息,的处理技巧;
目的是,(a)对feature map及参数进行压缩,起到降维作用;
(b)减小过拟合的作用。包括Max pooling 和average pooling;
(c)引入不变性,包括平移、旋转、尺度不变性。但CNN的invariance的能力,本质是由convolution创造的;
简而言之,如果输入是图像的话,那么池化层的最主要作用就是压缩图像。
为什么不用卷积步长的压缩:因为pooling layer的工作原理,在压缩上比convolution更专注和易用。
为什么不用BP神经网络去做呢?
(1)全连接,权值太多,需要很多样本去训练,计算困难。应对之道:减少权值的尝试,局部连接,权值共享。
卷积神经网络有两种神器可以降低参数数目。
第一种神器叫做局部感知野,一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。
第二级神器,即权值共享。
(2)边缘过渡不平滑。应对之道:采样窗口彼此重叠。
3、调参优化方法:基本原则—快速试错
(1)由小数据到大数据:刚开始, 先上小规模数据, 模型往大了放, 只要不爆显存, 能用256个filter你就别用128个. 直接奔着过拟合去。
目的:验证自己的训练脚本的流程对不对。如果小数据量下, 你这么粗暴的大网络奔着过拟合去都没效果. 那么, 你要开始反思自己了, 模型的输入输出是不是有问题? 要不要检查自己的代码(永远不要怀疑工具库, 除非你动过代码)? 模型解决的问题定义是不是有问题? 你对应用场景的理解是不是有错?
(2)loss设计要合理
多任务情况下, 各loss想法限制在一个量级上, 或者最终限制在一个量级上, 初期可以着重一个任务的loss。
(3)观察loss胜于观察准确率
LOSS下降时稳定的,而准确率有时是突变的,不能反映真实情况。给NN一点时间, 要根据任务留给NN的学习一定空间. 不能说前面一段时间没起色就不管了. 有些情况下就是前面一段时间看不出起色, 然后开始稳定学习.