赞
踩
class WordEmbeddingDataset(tud.Dataset): def __init__(self, text, word_to_idx, idx_to_word, word_freqs, word_counts): ''' text: a list of words, all text from the training dataset word_to_idx: the dictionary from word to idx idx_to_word: idx to word mapping word_freq: the frequency of each word word_counts: the word counts ''' super(WordEmbeddingDataset, self).__init__() self.text_encoded = [word_to_idx.get(t, VOCAB_SIZE-1) for t in text] self.text_encoded = torch.Tensor(self.text_encoded).long() self.word_to_idx = word_to_idx self.idx_to_word = idx_to_word self.word_freqs = torch.Tensor(word_freqs) self.word_counts = torch.Tensor(word_counts) def __len__(self): ''' 返回整个数据集(所有单词)的长度 ''' return len(self.text_encoded) def __getitem__(self, idx): ''' 这个function返回以下数据用于训练 - 中心词 - 这个单词附近的(positive)单词 - 随机采样的K个单词作为negative sample ''' center_word = self.text_encoded[idx] pos_indices = list(range(idx-C, idx)) + list(range(idx+1, idx+C+1)) pos_indices = [i%len(self.text_encoded) for i in pos_indices] pos_words = self.text_encoded[pos_indices] neg_words = torch.multinomial(self.word_freqs, K * pos_words.shape[0], True) return center_word, pos_words, neg_words
创建dataset和dataloader
dataset = WordEmbeddingDataset(text, word_to_idx, idx_to_word, word_freqs, word_counts)
dataloader = tud.DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4)
class EmbeddingModel(nn.Module): def __init__(self, vocab_size, embed_size): ''' 初始化输出和输出embedding ''' super(EmbeddingModel, self).__init__() self.vocab_size = vocab_size self.embed_size = embed_size initrange = 0.5 / self.embed_size self.out_embed = nn.Embedding(self.vocab_size, self.embed_size, sparse=False) self.out_embed.weight.data.uniform_(-initrange, initrange) self.in_embed = nn.Embedding(self.vocab_size, self.embed_size, sparse=False) self.in_embed.weight.data.uniform_(-initrange, initrange) def forward(self, input_labels, pos_labels, neg_labels): ''' input_labels: 中心词, [batch_size] pos_labels: 中心词周围 context window 出现过的单词 [batch_size * (window_size * 2)] neg_labelss: 中心词周围没有出现过的单词,从 negative sampling 得到 [batch_size, (window_size * 2 * K)] return: loss, [batch_size] ''' batch_size = input_labels.size(0) input_embedding = self.in_embed(input_labels) # B * embed_size pos_embedding = self.out_embed(pos_labels) # B * (2*C) * embed_size neg_embedding = self.out_embed(neg_labels) # B * (2*C * K) * embed_size log_pos = torch.bmm(pos_embedding, input_embedding.unsqueeze(2)).squeeze() # B * (2*C) log_neg = torch.bmm(neg_embedding, -input_embedding.unsqueeze(2)).squeeze() # B * (2*C*K) log_pos = F.logsigmoid(log_pos).sum(1) log_neg = F.logsigmoid(log_neg).sum(1) # batch_size loss = log_pos + log_neg return -loss def input_embeddings(self): return self.in_embed.weight.data.cpu().numpy()
定义一个模型以及把模型移动到GPU
model = EmbeddingModel(VOCAB_SIZE, EMBEDDING_SIZE)
if USE_CUDA:
model = model.cuda()
下面是评估模型的代码,以及训练模型的代码
def evaluate(filename, embedding_weights): if filename.endswith(".csv"): data = pd.read_csv(filename, sep=",") else: data = pd.read_csv(filename, sep="\t") human_similarity = [] model_similarity = [] for i in data.iloc[:, 0:2].index: word1, word2 = data.iloc[i, 0], data.iloc[i, 1] if word1 not in word_to_idx or word2 not in word_to_idx: continue else: word1_idx, word2_idx = word_to_idx[word1], word_to_idx[word2] word1_embed, word2_embed = embedding_weights[[word1_idx]], embedding_weights[[word2_idx]] model_similarity.append(float(sklearn.metrics.pairwise.cosine_similarity(word1_embed, word2_embed))) human_similarity.append(float(data.iloc[i, 2])) return scipy.stats.spearmanr(human_similarity, model_similarity)# , model_similarity def find_nearest(word): index = word_to_idx[word] embedding = embedding_weights[index] cos_dis = np.array([scipy.spatial.distance.cosine(e, embedding) for e in embedding_weights]) return [idx_to_word[i] for i in cos_dis.argsort()[:10]]
训练模型:
模型一般需要训练若干个epoch
①每个epoch我们都把所有的数据分成若干个batch
②把每个batch的输入和输出都包装成cuda tensor
③forward pass,通过输入的句子预测每个单词的下一个单词
④用模型的预测和正确的下一个单词计算cross entropy loss
⑤清空模型当前gradient
⑥backward pass
⑦更新模型参数
⑧每隔一定的iteration输出模型在当前iteration的loss,以及在验证数据集上做模型的评估
optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE) for e in range(NUM_EPOCHS): for i, (input_labels, pos_labels, neg_labels) in enumerate(dataloader): # TODO input_labels = input_labels.long() pos_labels = pos_labels.long() neg_labels = neg_labels.long() if USE_CUDA: input_labels = input_labels.cuda() pos_labels = pos_labels.cuda() neg_labels = neg_labels.cuda() optimizer.zero_grad() loss = model(input_labels, pos_labels, neg_labels).mean() loss.backward() optimizer.step() if i % 100 == 0: with open(LOG_FILE, "a") as fout: fout.write("epoch: {}, iter: {}, loss: {}\n".format(e, i, loss.item())) print("epoch: {}, iter: {}, loss: {}".format(e, i, loss.item())) if i % 2000 == 0: embedding_weights = model.input_embeddings() sim_simlex = evaluate("simlex-999.txt", embedding_weights) sim_men = evaluate("men.txt", embedding_weights) sim_353 = evaluate("wordsim353.csv", embedding_weights) with open(LOG_FILE, "a") as fout: print("epoch: {}, iteration: {}, simlex-999: {}, men: {}, sim353: {}, nearest to monster: {}\n".format( e, i, sim_simlex, sim_men, sim_353, find_nearest("monster"))) fout.write("epoch: {}, iteration: {}, simlex-999: {}, men: {}, sim353: {}, nearest to monster: {}\n".format( e, i, sim_simlex, sim_men, sim_353, find_nearest("monster"))) embedding_weights = model.input_embeddings() np.save("embedding-{}".format(EMBEDDING_SIZE), embedding_weights) torch.save(model.state_dict(), "embedding-{}.th".format(EMBEDDING_SIZE))
截取部分截图如图所示
epoch: 0, iter: 0, loss: 420.04736328125 epoch: 0, iteration: 0, simlex-999: SpearmanrResult(correlation=0.002806243285464091, pvalue=0.9309107582703205), men: SpearmanrResult(correlation=-0.03578915454199749, pvalue=0.06854012381329619), sim353: SpearmanrResult(correlation=0.02468906830123471, pvalue=0.6609497549092586), nearest to monster: ['monster', 'communism', 'bosses', 'microprocessors', 'infectious', 'debussy', 'unesco', 'tantamount', 'offices', 'tischendorf'] epoch: 0, iter: 100, loss: 278.9967041015625 epoch: 0, iter: 200, loss: 248.71990966796875 epoch: 0, iter: 300, loss: 202.95816040039062 epoch: 0, iter: 400, loss: 157.04776000976562 epoch: 0, iter: 500, loss: 137.83531188964844 epoch: 0, iter: 600, loss: 121.03585815429688 epoch: 0, iter: 700, loss: 105.300537109375 epoch: 0, iter: 800, loss: 114.10055541992188 epoch: 0, iter: 900, loss: 104.72723388671875 epoch: 0, iter: 1000, loss: 99.03569030761719 epoch: 0, iter: 1100, loss: 95.2179946899414 epoch: 0, iter: 1200, loss: 84.12557983398438 epoch: 0, iter: 1300, loss: 88.07209777832031 epoch: 0, iter: 1400, loss: 70.44454193115234 epoch: 0, iter: 1500, loss: 79.83641052246094 epoch: 0, iter: 1600, loss: 81.7451171875 epoch: 0, iter: 1700, loss: 75.91305541992188 epoch: 0, iter: 1800, loss: 65.86140441894531 epoch: 0, iter: 1900, loss: 69.81714630126953 epoch: 0, iter: 2000, loss: 71.05166625976562 epoch: 0, iteration: 2000, simlex-999: SpearmanrResult(correlation=-0.011490367338787073, pvalue=0.7225847577400916), men: SpearmanrResult(correlation=0.05671509287050605, pvalue=0.0038790264864563434), sim353: SpearmanrResult(correlation=-0.07381419228558825, pvalue=0.18921537418718104), nearest to monster: ['monster', 'harm', 'steel', 'dean', 'kansas', 'surgery', 'regardless', 'capitalism', 'offers', 'hockey']
embedding_weights = model.input_embeddings()
print("simlex-999", evaluate("simlex-999.txt", embedding_weights))
print("men", evaluate("men.txt", embedding_weights))
print("wordsim353", evaluate("wordsim353.csv", embedding_weights))
实验结果如下:
simlex-999 SpearmanrResult(correlation=0.17251697429101504, pvalue=7.863946056740345e-08)
men SpearmanrResult(correlation=0.1778096817088841, pvalue=7.565661657312768e-20)
wordsim353 SpearmanrResult(correlation=0.27153702278146635, pvalue=8.842165885381714e-07)
for word in ["good", "fresh", "monster", "green", "like", "america", "chicago", "work", "computer", "language"]:
print(word, find_nearest(word))
实验结果如下
good ['good', 'bad', 'perfect', 'hard', 'questions', 'alone', 'money', 'false', 'truth', 'experience']
fresh ['fresh', 'grain', 'waste', 'cooling', 'lighter', 'dense', 'mild', 'sized', 'warm', 'steel']
monster ['monster', 'giant', 'robot', 'hammer', 'clown', 'bull', 'demon', 'triangle', 'storyline', 'slogan']
green ['green', 'blue', 'yellow', 'white', 'cross', 'orange', 'black', 'red', 'mountain', 'gold']
like ['like', 'unlike', 'etc', 'whereas', 'animals', 'soft', 'amongst', 'similarly', 'bear', 'drink']
america ['america', 'africa', 'korea', 'india', 'australia', 'turkey', 'pakistan', 'mexico', 'argentina', 'carolina']
chicago ['chicago', 'boston', 'illinois', 'texas', 'london', 'indiana', 'massachusetts', 'florida', 'berkeley', 'michigan']
work ['work', 'writing', 'job', 'marx', 'solo', 'label', 'recording', 'nietzsche', 'appearance', 'stage']
computer ['computer', 'digital', 'electronic', 'audio', 'video', 'graphics', 'hardware', 'software', 'computers', 'program']
language ['language', 'languages', 'alphabet', 'arabic', 'grammar', 'pronunciation', 'dialect', 'programming', 'chinese', 'spelling']
man_idx = word_to_idx["man"]
king_idx = word_to_idx["king"]
woman_idx = word_to_idx["woman"]
embedding = embedding_weights[woman_idx] - embedding_weights[man_idx] + embedding_weights[king_idx]
cos_dis = np.array([scipy.spatial.distance.cosine(e, embedding) for e in embedding_weights])
for i in cos_dis.argsort()[:20]:
print(idx_to_word[i])
实验结果如下:
king henry charles pope queen iii prince elizabeth alexander constantine edward son iv louis emperor mary james joseph frederick francis
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。