当前位置:   article > 正文

如何使用R进行数据展现?且看使用iris数据可视化实例_查看iris数据集的属性(1)利用summary()函数获取描述性统计量,利用str()函数显

查看iris数据集的属性(1)利用summary()函数获取描述性统计量,利用str()函数显
iris数据的详细介绍如下:


首先,要查看iris数据集的大小和结构,其维度和名称分别使用函数dim 和names获取,函数str 和attributes返回数据的结构和属性。


dim(iris)
names(iris)
str(iris)
attributes(iris)


接下来,查看数据的前五行,返回第一和最后一行,使用head和tail


iris[1:5,]
head(iris)
tail(iris)


还可以查找某一列的值:


例如,下面的两行代码可用来获取到Sepal.Length的前10个值。
iris[1:10, "Sepal.Length"]
iris$Sepal.Length[1:10]


每一个数值型变量的分布情况,可用函数summary进行查看。该函数的返回值是变量中的最小值、最大值、平均值、中位数、第一四分位数(25%)和第三四分位数(75%)。
对于因子(或分类变量)而言,函数返回的是每一个等级水平的频数。
summary(iris)


平均值、中位数和极差也可以分别使用函数mean、median和range获取,获取四分位数和百分位数可以使用quantile函数,代码如下所示:


quantile(iris$Sepal.Length)
quantile(iris$Sepal.Length, c(.1, .3, .65))


接下来,使用函数var查看Sepal.Length的方差,使用hist绘制分布直方图,使用函数density计算密度估计值。
var(iris$Sepal.Length)
hist(iris$Sepal.Length)

密度图
plot(density(iris$Sepal.Length))



饼图
因子的频数可以由函数table计算,然后使用函数pie绘制饼图,绘制条形图。或使用函数barplot绘制条形图。
table(iris$Species)
pie(table(iris$Species))



条形图
barplot(table(iris$Species))



查看了单个变量的分布后,还需要展现两个变量之间的关系。下面使用函数cov和cor 分别计算变量之间的协方差和相关系数。
cov(iris$Sepal.Length, iris$Petal.Length)
cov(iris[,1:4])
cor(iris$Sepal.Length, iris$Petal.Length)
cor(iris[,1:4])


接下来,使用函数aggregate计算每一个鸢尾花种(species)的sepal.Lellgth的统计数据。


aggregate(Sepal.Length ~ Species, summary, data=iris)


然后,使用函数boxplot绘制盒图(又称为盒形-虚线图),以展示数据分布的中位数、第一四分位数和第三四分位数(即累积分布中的位于50%、25%、75%位置上的点),以及离群点。


盒图中间的横线表示中位数。图示四分位差(IQR),即第三四分位数(75%)与第一四分位数(25%)的差值。
boxplot(Sepal.Length~Species, data=iris)
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/402261
推荐阅读
相关标签
  

闽ICP备14008679号